CROPLANDS

OPERATORS MANUAL SUPPLEMENT BROADACRE SPRAYERS

WWW.CROPLANDS.COM.AU

STOP BEFORE COMMENCING operation, **ENSURE** you read & understand this manual, its contents, and any additional information supplied.

INTRODUCTION GENERAL MANAGER'S WELCOME

Sean Mulvaney General Manager

Dear Customer

Congratulations on the purchase of your new Croplands Sprayer.

Croplands have been in the business of building sprayer equipment since 1972. For over 49 years we have been supplying sprayers to farmers, contractors, growers and all our customers involved in growing crops and in the control of pests and diseases.

Croplands is a wholly owned subsidiary of Nufarm Ltd, the largest supplier of crop protection chemicals for Australasia, and one of the fastest growing global suppliers world-wide.

At Croplands, we pride ourselves on our commitment to supplying machinery that is at the forefront of the industry's needs. We believe we can back up our products and through constant research and development, bring to you the best equipment you can find.

We welcome any feedback from you about our equipment.

On the back cover you will find our contact details, and locations where our staff can be reached during business hours. After hours, you can email us and expect a reply the following morning.

Please read this manual in its entirety before you operate your sprayer. This will ensure you have a trouble free start up.

We trust you will get years of good use from your Croplands Sprayer.

Yours Sincerely

Sean Mulvaney General Manager

Croplands has taken steps to ensure this operator's manual is as current and as accurate as possible. Due to the ever-changing markets of cropping and farming, Croplands is constantly striving to be at the forefront of innovation and technology. While the information in this manual is considered accurate at the time of writing, Croplands reserves the right to change this information without notice. Croplands will not accept liability for any inaccuracy in this publication, or changes forthwith.

CONTENTS

SECTION 1 IMPORTANT INFORMATION

About This Manual Terminology Before Operating Your Sprayer About Broadacre Sprayers Warranty Policy

SECTION 2 SAFETY

Safety first Safety signs and decals

SECTION 3 PRODUCT IDENTIFICATION, SHIPPING & SPECIFICATION

Product identification
 Shipping information
 Weights & dimensions

4

6

7

SECTION 4 SPRAYER OPERATION

Check the operation c	of your sprayer
Boom Spray Calibrati	on Guide
Teejet® XR (Extended	range) &
AI (Air induction) Noz	zle Guide
Teejet® Air-Mix & Tur	bodrop® Nozzle chart (1)
Teejet® Air-Mix & Tur	bodrop® Nozzle chart (2)
Calibration Work She	et
Foam Marker	
Chemical Mixing	

SECTION 5 ASSEMBLY DRAWINGS & PARTS LISTINGS

	UCM/ECM Controllers (Pressure Relief Valve)	34
8	Pony Plumbing Diagram	36
8	Wiring Diagram	37
8	Liquid Control System	38
	Liquid System	39
	Valves & Enviro-Transfer Kit	40
	Filters	41
10	Chem E Flush Assembly	42
15	Lids, Venturis & Tank Rinse Jet	44
	Foam Marker Salvarani	45
17	GEX Booms	46
18	Airbags	51
19	EnviroSafe Booms	53
20	Boom Centre Section - Standard & G-Var	57
25	Boom Self Leveller - Standard & G-Var	58
28	Boom - 16.5 metre Standard	59
	Boom - 16.5 metre G-Var	60
	Boom Centre Section - Hydralink	61
	Boom Self Leveller - Hydralink	62
	Boom - 12 metre Hydralink	63
	Boom - 15 metre Hydralink	64

SECTION 1 IMPORTANT INFORMATION

ABOUT THIS MANUAL

This GENERAL manual is a generic overview for setting up, operating and maintaining your Croplands sprayer for which there is not a specific manual.

In addition to this manual, the sprayer will be delivered with the General Safety Manual (GP-SAFE-A).

For details not covered by the manuals, please contact Technical Support on 1300 650 724.

Some features and options explained in this manual may not be installed on your sprayer.

Please pass on this manual with the sprayer at the time of resale for usage by the new owner.

This manual, was first published in 2008 as part number, GP-POMBA001108. This April 2021 (Rev 4) issue has updates to Sections 1, 2, 3 and 5.

Check online as there may be more recent revisions of this manual. **www.croplands.com.au**

NOTE

To convey useful operating information.

To stress potential dangers and the importance of personal safety.

TERMINOLOGY

These terms/symbols used throughout this manual:

NOTE	This Note sign is in place to convey useful information and will help you to identify the best possible way to operate the machine.
CAUTION	This Caution sign shows the potential for incident. An incident may include damage to the machine itself, or possible injury to the operator.
WARNING	This warning sign shows the potential for risk or injury and highlights the need for steps to be taken to protect ones safety.
DANGER	This Danger sign will be used in areas where the highest risk is present. Always read the information on these signs and ensure you are taking steps to prevent risk or injury.

Probability of death or serious injury if an accident occurs

BEFORE OPERATING YOUR SPRAYER

Before attempting to use your sprayer, make sure you read all Operator Manuals for this sprayer including but not limited to:

This Operator's Manual, **and all other supplied manuals** for items such as safety, pumps, PTO, controller, boom etc.

And properly understand:

- All Safety Issues.
- Assembly & Installation instructions.
- Calibration of the sprayer.
- Sprayer Operation.
- Sprayer Maintenance.

ABOUT BROADACRE SPRAYERS

Croplands broadacre sprayers come in several tank sizes, with boom widths to suit a host of different applications.

The primary applications are generally broadacre cropping and pasture renovation and preservation. Some of the Croplands broadacre range can also be used for liquid fertiliser operations. Other mainstream uses of Croplands broadacre machinery include Intensive agricultural spraying and row cropping.

Croplands broadacre range has many options, which include boom widths and style, pump volumes, pressure and drive type, mixing systems, nozzle size and type, controllers and tractor connection to name a few.

Depending on the options you have chosen for your Croplands sprayer, some of the information and parts listings covered in this supplement may not apply to you machine.

Again, if you have any questions regarding to how this manual pertains to your machine, please contact your nearest Croplands dealer for assistance.

SECTION 1 IMPORTANT INFORMATION

WARRANTY POLICY

Each sprayer will be delivered with a Warranty & Pre-Delivery Booklet which includes:

- the Sprayer's unique serial number,
- the Sprayer's specification sheet,
- a pre-delivery checklist and
- outlines the Croplands Warranty policy.

Always contact your Croplands Dealer first and foremost for warranty matters.

NOTE For full conditions of warranty and warranty policy, please see the Warranty & Pre-Delivery booklet provided with this sprayer.

<section-header><section-header><text><text>

SECTION 2 SAFETY

SAFETY FIRST

Please read and understand all supplied manuals, guides and safety decals before operating this sprayer. This includes the **Croplands Operators Safety Manual** – as pictured here.

This manual is available on the Croplands Web site, or for printed versions contact Croplands customer support and ask for part number GP-SAFE-A (or later version if available).

SECTION 2 SAFETY

SAFETY SIGNS AND DECALS

All signs and decals for sprayer safety and operation must be maintained in good order and replaced if damaged or missing. Most Croplands labels have a part number printed on the decal to aid identification and replacement.

Some examples are shown below.

Part No: XD -182

SECTION 3 PRODUCT IDENTIFICATION, SHIPPING & SPECIFICATION

PRODUCT IDENTIFICATION

Always use the serial number of the Sprayer when requesting service information or when ordering parts.

Early or later models (identification made by serial number) may use different parts, or it may be necessary to use a different procedure for specific service operations.

The serial numbers of all controllers, pumps etc should also be recorded for future reference.

Photo 1

SHIPPING INFORMATION

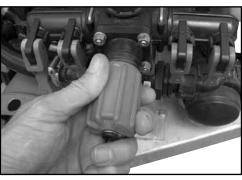
All provided tie down points (and more) should be used to help secure the sprayer for transporting.

Note serial number plate in the attached image.

Photo 2

WEIGHTS & DIMENSIONS

Croplands customer service can provide weights and dimensions details as required.


Freecall 1800 999 162

SECTION 4 SPRAYER OPERATION

CHECK THE OPERATION OF YOUR SPRAYER	10
BOOM SPRAY CALIBRATION GUIDE	15
TEEJET® XR (EXTENDED RANGE) & AI (AIR INDUCTION) NOZZLE GUIDE	17
TEEJET [®] AIR-MIX & TURBODROP [®] NOZZLE CHART (1)	18
CALIBRATION WORK SHEET	20
FOAM MARKER	25
CHEMICAL MIXING	28

Check Sprayer Operation

Sprayer Operation

Wind the pressure control knob anticlockwise to ensure the sprayer starts up with limited pressure.

1 Manual-Tap Controls

If your sprayer is fitted with standard manual-tap controls, the UCM/ECM manual control unit will come with a remote mount kit to attach the unit to the tractor (linkage sprayers have an adjustable, easy access arm mounted on the unit).

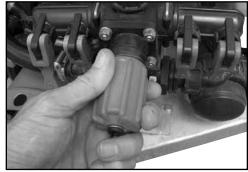
- a) Fit the control unit to the tractor where the operator can best access it.
- b) Fit the pressure and bypass lines to the controller and ensure they are tight (no leaks)
- c) Wind the pressure control knob anticlockwise to ensure the sprayer

Linkage with UCM manual controls.

starts up with limited pressure.

- d) Start the pump by engaging the PTO or starting the motor and operate at your required revs.
- e) Turn on the appropriate section selector taps to start the nozzles spraying.

Ensure any agitators are engaged and working.


Make sure you have your chosen nozzle selection fitted to the sprayer so that your application will be correct.

NOTE

Maximum PTO speed for the pump is 540 RPM.

It is recommended that a minimum of 400 RPM

is used for best results.

Wind the pressure control knob clockwise until the chosen operating pressure is reached.

f) Slowly wind the pressure control knob clockwise until your chosen operating pressure is reached.

Maximum recommended pressure is 12 bar.

g) Check section operation with the appropriate selector taps.

Always insure the sprayer are controls are turned off and hydraulic fan drive & PTO disengaged when making any repairs or adjustments.

Making adjustments while the sprayer is operating can lead to serious injury.

Check the Operation of your sprayer.

To check the operation of your machine, there are three sections to consider:

- 1 Manual-tap controls
- 2 Electric controls

3 Auto spray rate controllers

For all three pre-operation checks, ensure you have sufficient clean water in the sprayer, and the pump suction valve is open for sourcing liquid from the main tank.

WARNING

Important! Do not have pesticides in the spray tank when checking the sprayer.

Check Sprayer Operation

Fit the electric control console in the cab and wire the power cable to the battery.

2 Electric Controls (Optional)

If your sprayer is fitted with electric controls, the control panel and wiring loom for the tractor end will be supplied, ready to connect to the sprayer.

Complete the following steps to test the electric controls:

This electric controller provides boom switch and pressure controls.

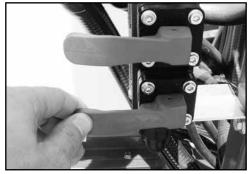
Important! Do not have pesticides in the spray tank when checking the sprayer.

(3) Check the directional valve is from the spray tank.

To operate the unit:

- 1 Connect your sprayer to the tractor (see hookup information in your operators manual) connecting the hitch, PTO (if required) and controller.
- 2 Fill appropriate quantity of clean water into spray tank. Always fill the tank through the main lid with the basket filter in place.
- 3 Check that the directional valve is feeding from the spray tank unless fed directly.
- 4 Place sprayer control into start up position by ensuring the master switch is in OFF position.
- 5 Engage the pump. If the pump is PTO driven bring the PTO (pump) speed up to 540 RPM. All pumped liquid is now being passed through the dump valve back into the tank. The system is not pressurised and tank agitators are not working.

(6) Pressurise the system with the Masster Switch in ON position.


- 6 Pressurise the system and operate the tank agitator by placing the master switch into ON position.
- 7 Adjust pressure to desired operating pressure by first closing the electrical regulating valve (servo) using the pressure up/down switch on the console, and then by adjusting the manual pressure relief valve to maximum working pressure.

Maximum working pressure should not exceed 8 bar.

Turn agitator tap on (if fitted).

(7) Adjust the manual relief valve.

Turn the agitator tap ON (if fitted).

- 8 Check that the agitator valve is open.
- 9 Check that the tank agitator is working.

Maximium working pressure with the electric regulating valve closed should <u>not</u> exceed 8 bar.

Check Sprayer Operation

Sprayer Operation

- (10) Turn the boom switches ON & OFF to check operation.
- 10 Turn spray booms ON and OFF to check that they are operating.
- 11 Turn fence-line sprayer ON and OFF to check that it is working correctly (if fitted).
- 12 While water is being pumped through the boom, check for any leakages or blockages throughout the sprayer. Check all hose connections, valves, filters, boom fittings etc. Check the nozzles are operating correctly.

Rectify any problems.

(13) Check and adjust pressure with boom switches ON.

- 13 With all boom sections operating, check operating pressure and make appropriate adjustment.
- 14 Switch booms ON and OFF several times and check that the non-drip diaphragms are working.
- 15 On completion of checking the sprayer turn controls off by placing the master switch and boom switches in OFF position.
- 16 Disengage PTO after the controller master switch is turned OFF.

NOTE

Ensure the operating pressure, when the boom nozzles are operating, does <u>not</u> exceed recommended maximum pressure for the nozzles you are using.

Check Sprayer Operation

MT3405 & Spraymate II Controller.

3 MT3405F & Spraymate II Operation (if fitted)

The automatic spray controller controls all aspects of the spray application rate.

Set the rates you want and the controller ensures constant application rate -irrespective of undulating terrain, engine speed, ground speed and variations in nozzle wear.

(3) Check the directional valve is from the spray tank.

To operate the unit:

- 1 Connect your sprayer to the tractor (see operators manual)
- 2 Fill an appropriate quantity of clean water into spray tank (see operators manuals).
- 3 Check that the directional valve is feeding from the spray tank.
- 4 Follow the instructions in the spray controller instruction manual
 to calibrate and operate the controller.

When checking the calibration factor, use the croplands number written on the flow-meter as shown in the picture above right, not the one provided on the tab.

NOTE

Additional copies of the Spray Controller manual can be downloaded in PDF file format fro the internet. For the Micro-trak MT3405 or MT9000 controllers, log onto www.micro-trak.com.au & follow the menu.

Use the Croplands calibration factor when checking your controller.

- 5 Place the master switch of the spray controller in OFF position for start up. Ensure the controller power switch is ON.
- 6 Engage the PTO and bring the PTO (pump) speed up to 540 RPM. In the case of a hydraulic drive, engage the appropriate hydraulic remote.
- 7 Adjust the spraying pressure as follows with the tractor & sprayer stationary:
 - a) On the spray controller, select the MANUAL mode using the appropriate key.
 - b) Switch on all boom valves, and switch the controller into the "RUN" position. Water will now be flowing out the nozzles. It is recommended to do this with the boom open in the spraying position.

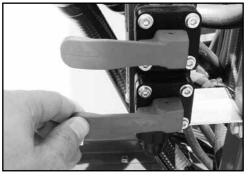
Adjust the manual pressure relief valve.

- c) Use the "+" key on the spray controller to fully close the electric servo valve. This will take a few seconds.
- d) When the servo is fully closed, adjust the manual pressure relief valve as shown to the maximum working pressure. For Broadacre sprayers, we recommend the maximum working pressure be set at 8 BAR (120 psi).

If the maximum pressure is above this, damage to your sprayer may result.

e) Use the "-" key to reduce the pressure to your normal spraying pressure - 2-4 BAR (30-60 psi).

NOTE


To properly check the controller operation, unfold the boom and complete the steps 1 -16 above.

A WARNING

Important! Do not have pesticides in the spray tank when checking the sprayer.

Check Sprayer Operation

Sprayer Operation

Turn agitator tap on (if fitted).

- 8 Check the tank agitator valve is open (if fitted).
- 9 Visually check that tank agitators are working.
- 10 Turn the controller master switch ON & OFF and check all boom sections switch off together.

Auto/Man key and +/- keys.

- 11 Turn fence-line nozzle ON & OFF to check it is working correctly (if fitted).
- 12 While water is being pumped through the boom, check for any leaks or blockages throughout the sprayer. Check all hoses, connections, valves, filters, boom fittings etc. Check the nozzles are operating correctly.

Rectify any problems.

Boom switches On, Master switch On Hold.

13 With all boom sections operating, re-check pressure range by alternating from "+" to "-" on the spray controller while in MANUAL mode.

Ensure maximum pressure does not exceed 8 BAR.

Minimum pressure should reach almost zero.

14 Switch booms ON & OFF several times, ensuring each section is operating individually, and that the non-drip nozzle bodies are working.

Spraymate II controller +/- & auto/man keys.

- 15 On completion of checking the sprayer, turn controls OFF by placing the master switch and boom switches in OFF position.
- 16 Disengage PTO or Hydraulic pump drive after the Spray Controller is switched off.

Spraymate II controller boom switches.

Part No. GP-POMBA001108 - Rev 4

NOTE

The maximum spraying pressure will vary with different nozzles.

We recommend you re-adjust your maximum pressure if you change your nozzle selection.

Boom Spray Calibration Guide

GENERAL

Boom sprayers out of calibration will not deliver the desired amount of chemical onto the paddock. This can result in:

- Increase in chemical costs
- Increase in crop effect
- Decrease in efficiency
- Potential loss in yield

Even a minor 10 % change in flow rate will add up to larae sums..

Therefore it is advisable to calibrate the boom sprayer at least every 12 months. This is less complicated than many people think. The following procedure is aimed to provide a practical on-farm guide.

The following equipment is needed:

- A watch, displaying seconds
- A jug, displaying a volume scale
- At least one new nozzle of the type fitted onto the boom
- Nozzle tip reference tables to determine flow rates and spray quality (available from Nufarm/Croplands)

STEP 1: SPEED CALIBRATION

To measure travel speed accurately it is important to do so by travelling over an exact distance (commonly 100 m) and to measure the time it takes to travel that distance. To mark the precise distance the use of a measuring tape is essential. Permanent markers will make this measured stretch a handy tool on farm.

It is advisable to undertake the calibration in the gear and RPM's the applications are commonly done with. The tank should be half filled. Sufficient run up assures that the starting line is crossed already travelling at desired speed. It is worthwhile to repeat the procedure at least twice to eliminate

- Calculator
- Nozzle cleaning brush
- Tape measure, or other device to measure a distance of 100m

Before starting the calibration the spray equipment needs to be checked to eliminate basic faults

- Nozzles all fitted nozzles should be of the same type and size. Their spray pattern should be even (nozzles and strainers may need to be cleaned and may need to be replaced if necessary).
- Boom hoses and joins should be checked for leaks. All systems should be in operating order.
- Tank should be half filled with water.

The boom spray calibration is affected by two main factors:

A) Travel speed (Step 1) and

B) The output of nozzles (Step 2 - 5)

In the following procedure these two factors are checked independently, but ultimately, they are inseparably linked together.

any possible error. The travel speed in km/h can then be calculated from this simple formula:

km/h = Distance (m) x 3.6 / time (sec).

EXAMPLE

It took 20 sec (measured twice to be sure) to travel 100 m. The speed is 100 m x 3.6 / 20 sec = 18 km/h.

STEP 2: CALCULATION OF NOZZLE FLOWRATE

At first it is necessary to work out what the nozzle output should be. The nozzles can then be checked to see if they are delivering the flow rate they are supposed to deliver. For this calculation three things need to be determined:

- 1) What is the preferred application speed (already measured)
- 2) What is the preferred water rate per ha
- 3) What is the nozzle spacing on the rig

Nozzle spacing

The most common spacing between nozzles on boom sprayers is 50 cm. It is important to be sure about the correct nozzle spacing, and if in doubt, measuring is advisable.

EXAMPLE

The measurement was 50 cm.

Calculation

A simple formula is transforming all this 'large scale' application information into a single, easy to measure 'output per nozzle, per minute' figure.

L/min/nozzle	$= \frac{L/ha \times km/h \times W (cm)}{L/ha \times km/h \times W (cm)}$					
60000						
L/min/nozzle	= Nozzle flow rate in litre per minute					
L/ha	= Water application rate per hectare					
L/ha Km/h W	= Driving speed					
W	= Width of nozzle spacing in cm					
60000	= Constant					

EXAMPLE

Application Volume

Application Guide).

EXAMPLE

The desired application volume in L/ha can be

from manufacturers (e.g. Nufarm Boom Spray

obtained from pesticide labels or other publications

The product used was Roundup PowerMax® for control of

summer weeds and the information from Nufarm advised

that 40 - 70 L/ha was a sufficient water rate. Because the

paddock contained stubble, it was recommendable to use a

higher water rate. Therefore the 70 L/ha rate was chosen.

The desired water rate was 70 L/ha, applied with a speed of 18 km/h and the boom had a nozzle spacing of 50 cm: $1/min = \frac{70 \text{ l/ha} \times 18 \text{ km/h} \times 50 \text{ cm}}{105 \text{ l/min}} = 1.05 \text{ l/min}$ 60000 To achieve this goal every single nozzle needed to deliver 1.05 L/min.

STEP 3: SELECTING PRESSURE AND SPRAY QUALITY

Nozzles deliver different flow rates and droplet sizes (more commonly called spray quality) at varying pressures.

The pressure needed to produce a certain flow rate for a specific nozzle type and size can be found in specific tables (Croplands Optima Catalogue, Nufarm Nozzle Charts, TeeJet® Catalogue).

For efficacy and legal reasons it is important to be clear about the spray quality a specific nozzle type is going to produce. If in doubt an advisor should be consulted. For example, it is not desirable to calibrate and set up a nozzle type and size that can only spray FINE to MEDIUM spray quality when the chemical that is going to be put out has to be sprayed with a COARSE to VERY COARSE spray quality. To minimise chemical loss through drift it is advisable to choose a set up that is producing the coarsest spray quality without compromising efficacy.

Desired spray quality information can be obtained from chemical labels or additional information put out by manufacturer (e.g. Nufarm Boom Spray Application Guide, Croplands Optima Catalogue).

EXAMPLE

The chemical to be used was Roundup PowerMAX. To control summer weeds, the coarsest spray quality, the product should be sprayed with is COARSE, according to the Nufarm Boomspray Application Guide. The boom was fitted with AirMix® 025 nozzles. According to the Nufarm Nozzle Chart reference, the pressure set up needed to be ground 3.3 bar to get the desired flow rate of 1.05 L/min. The Nufarm Nozzle Chart showed that at 3.3 bar this nozzle type and size is producing a COARSE spray quality. Therefore this nozzle type was suited for the planned application. The boomsprayer needed to be set up to spray at 3.3 bar to deliver the desired flowrate and spray quality.

L/min/nozzle	$= \frac{L/ha \times km/h \times W (cm)}{60000}$
L/min/nozzle	= Nozzle flow rate in litre per min
L/ha	= Water application rate per hec
L/ha Km/h W	= Driving speed
W	= Width of nozzle spacing in cm

Boom Spray Calibration Guide

Sprayer Operation

STEP 4: PRESSURE SET-UP

All the theoretical work on nozzle flow rates is now finalised.

At least one old nozzle needs to be replaced with a new nozzle of the same type (the old nozzles may be worn). The sprayer can be turned on now and the desired pressure can be selected. If the pressure gauge is measuring the pressure at the nozzle end, measuring can start now.

However, many gauges are measuring the pressure at the pump end. In this case one nozzle needs to be replaced with a nozzle pressure Gauge (obtainable from Croplands) to measure the correct pressure at the nozzle end. As a rule of

STEP 5: MEASURING NOZZLE FLOW RATE

While spraying, a jug must be placed underneath the new nozzle to collect fluid for a duration of 60 seconds. Effectively this is measuring the output per nozzle per minute.

If the output is too much for the scales of the jug, the time may be halved to 30 sec. In this case the measured volume needs to be doubled to refer back to a per minute output. The measured volume can now be compared to the theoretical value calculated above.

Depending on the difference, the pressure may need some fine-tuning to obtain exactly matching flow rate values.

Individual nozzle outputs may vary. Therefore, measurements should be repeated with a minimum of three nozzles per

boom section to check for nozzle wear. All outputs should be within a 10% ranae. If more than one nozzle is out of range, the whole nozzle set should be replaced.

thumb, if the pressure between pump and nozzle end varies by more than 20 % there is a serious pressure drop and the

EXAMPLE

An old Airmix 025 was replaced with a new one. The pressure was set-up to be 3.3 bar at the nozzle end. The measured flow rate of the new nozzle was 1.0 L/min. Therefore the pressure needed to be slightly increased to 3.5 bar and the flow rate was brought up to the desired 1.05 I/min for the new nozzle

The boom had 5 sections and therefore measurements needed to be repeated for three nozzles in each section. Results were:

1.05	1.00	1.05	1.05	1.15
1.05	1.15	1.0.5	1.0.5	1 10

1.10 1.10 1.05 1.15 1.05

Three of the nozzles had a flow rate differing by around 10 % from the desired out put. A re-check of those three nozzles gave the same result. Therefore, there was little confidence in the future performance of the whole set. The two-year-old set needed to be replaced.

After replacement, the new nozzles were checked again and flow rates were uniform at 1.05 L/min.

STEP 5B: ALTERNATIVE MEASURING OF NOZZLE FLOW RATE

Rather than using a jug and timer, an instant Tip Tester can be used. This method is not as accurate but handy to do a quick check or compare many nozzles in a short space of time.

The Tip tester has a rubber seal that is placed tightly over the nozzle

The actual flowrate coming out of the nozzle pushes up a little ball in a tube. By looking at the position of

(see picture).

the ball the flow rate can be read directly from a scale

STEP 6: AUTOMATIC RATE CONTROLLER

Many boom sprayers are set up with automatic rate controllers that will allow a constant per ha output with varving speeds by adjusting the flow rate. The two main factors governing the system are again the precise measuring of:

A) Speed

B) Flow rate

At the initial set up of the machinery, precise inputs into the rate controller would have assured precise operation. However, over time, machinery will wear, therefore, it is important to check if initial inputs are still in calibration.

Flowmeter

The greater the water volume measured the more precise the outcome will be. It is not practical to obtain overall boom flow rates through nozzles. Therefore the easiest way is to take off a section of boom hose (all other sections need to be closed) and to fill a measuring drum up to the 100 L mark. The 100 L volume can then be compared to the volume measured by the flowmeter. If necessary controller inputs need to be adjusted (refer to individual controller handbooks).

The actual procedure to reset the rate controller will be different from system to system but in principal it will be the same. An exactly measured 100 m distance (see Step 1) needs to be travelled and compared to the distance calculated by the rate controller. If necessary the controller inputs need to be changed (refer to controller handbook).

CROPLANDS CALIBRATION KIT

For more information, call Croplands on: 1800 999 162 (Freecall Australia) sales@croplands.com.au www.croplands.com.au

Teejet® XR (Extended range) & AI (Air induction) Nozzle Guide

Nozzle			Litres/ha @ 500mm nozzle spacing									
(filter)	Bar	l/min	4km/h	5km/h	6km/h	7km/h	8km/h	10km/h	12km/h	16km/h	18km/h	20km/h
XR11001 Al11001 (100 mesh)	1.0 1.5 2.0 3.0 4.0	0.23 0.28 0.32 0.39 0.45	69.0 84.0 96.0 117 135	55.2 67.2 76.8 93.6 108	46.0 56.0 64.0 78.0 90.0	39.4 48.0 54.9 66.9 77.1	34.5 42.0 48.0 58.5 67.5	27.6 33.6 38.4 46.8 54.0	23.0 28.0 32.0 39.0 45.0	17.3 21.0 24.0 29.3 33.8	15.3 18.7 21.3 26.0 30.0	13.8 16.8 19.2 23.4 27.0
XR110015 Al110015 (100 mesh)	1.0 1.5 2.0 3.0 4.0	0.34 0.42 0.48 0.59 0.68	102 126 144 177 204	81.6 101 115 142 163	68.0 84.0 96.0 118 136	48.3 72.0 82.3 101 117	51.0 63.0 72.0 88.5 102	40.8 50.4 57.6 70.8 81.6	34.0 42.0 48.0 59.0 68.0	25.5 31.5 36.0 44.3 51.0	22.7 28.0 32.0 39.3 45.3	20.4 25.2 28.8 35.4 40.8
XR11002 Al11002 (50 mesh)	1.0 1.5 2.0 3.0 4.0	0.46 0.56 0.65 0.79 0.91	138 168 195 237 273	110 134 156 190 218	92.0 112 130 158 182	78.9 96.0 111 135 156	69.0 84.0 97.5 119 137	55.2 67.2 78.0 94.8 109	46.0 56.0 65.0 79.0 91.0	34.5 42.0 48.8 59.3 68.3	30.7 37.3 43.3 52.7 60.7	27.6 33.6 29.0 47.4 54.6
XR11003 Al11003 (50 mesh)	1.0 1.5 2.0 3.0 4.0	0.68 0.83 0.96 1.18 1.36	204 249 288 354 408	163 199 230 283 326	136 166 192 236 272	117 142 165 202 233	102 125 144 177 204	81.6 100 115 142 163	68.0 83.0 96.0 118 136	51.0 62.3 72.0 88.5 102	45.3 55.3 64.0 78.7 90.7	40.8 49.8 57.6 70.8 81.6
XR11004 Al11004 (50 mesh)	1.0 1.5 2.0 3.0 4.0	0.91 1.12 1.29 1.58 1.82	273 336 387 474 546	218 269 310 379 437	182 224 258 316 364	156 192 221 271 312	137 168 194 237 273	109 134 155 190 218	91.0 112 129 158 182	68.3 84.0 96.8 119 137	60.7 74.7 86.0 105 121	54.6 67.2 77.4 94.8 109
XR11005 Al11005 (50 mesh)	1.0 1.5 2.0 3.0 4.0	1.14 1.39 1.61 1.97 2.27	342 417 483 591 681	274 334 386 473 545	228 278 322 394 454	195 238 276 338 389	171 209 242 296 341	137 167 193 236 272	114 139 161 197 227	85.5 104 121 148 170	76.0 92.7 107 131 151	68.4 83.4 96.6 118 136

Teejet® Air-Mix & Turbodrop® Nozzle chart (1)

			Litres/ha @ 500mm nozzle spacing							
Nozzle	Bar	l/min	5km/h	6km/h	7km/h	8km/h	10km/h	12km/h	16km/h	20km/h
TDAM015	1	0.346	83	69	59	52	42	35	26	21
TD015	2	0.490	118	98	84	74	59	49	36	29
(Green)	3	0.600	144	120	103	90	72	60	45	36
	4	0.693	166	139	119	104	83	69	52	42
TEEJET AI	5	0.775	186	155	133	116	93	77	58	47
110015	6	0.849	204	170	146	127	102	85	64	51
TDAM02	1	0.462	111	92	79	69	55	46	35	28
TD02	2	0.653	157	131	112	98	78	65	49	39
(Yellow)	3	0.800	192	160	137	120	96	80	60	48
(101011)	4	0.924	222	185	159	139	111	92	69	56
TEEJET AI	5	1.033	248	207	177	155	124	103	77	62
11002	6	1.131	271	226	94	170	136	113	85	68
TDAM025	1	0.577	138	115	99	87	69	58	43	35
TD025	2	0.816	196	163	140	122	98	82	61	49
(Lilac)	3	1.000	240	200	171	150	120	100	75	60
()	4	1.154	278	231	199	174	139	115	86	70
TEEJET AI	5	1.291	310	259	221	194	155	129	96	78
110025	6	1.414	339	283	243	213	170	141	106	85
TDAM03	1	0.693	166	139	119	104	83	69	52	42
	2	0.980	234	196	168	147	118	98	74	42 59
TD03 (Blue)	3	1.200	288	240	206	180	144	120	90	72
(Diue)	4	1.385	333	278	238	208	166	138	104	84
TEEJET AI	5	1.549	372	310	266	232	186	154	116	94
11003	6	1.697	408	340	292	254	204	170	128	102

Teejet® Air-Mix & Turbodrop® Nozzle chart (2)

			Litres/ha @ 500mm nozzle spacing							
Nozzle	Bar	l/min	5km/h	6km/h	7km/h	8km/h	10km/h	12km/h	16km/h	20km/h
TDAM04	1	0,924	222	185	158	139	111	92	69	55
TD04	2	1,306	313	261	224	196	157	131	98	78
(Red)	3	1,600	384	320	274	240	192	160	120	96
	4	1,847	444	370	318	278	222	184	138	112
TEEJET AI	5	2,066	496	414	354	310	248	206	154	124
11004	6	2,263	542	452	388	340	272	226	170	136
	1	1,155	277	231	198	173	139	116	87	69
TDAM05			392	327	280		196	163		98
TD05	2	1,633				245			122	
(Brown)	3	2,000	480	400	342	300	240	200	150	120
	4	2,309	556	462	398	348	278	230	172	140
11005	5	2,582	620	518	442	388	310	258	192	156
11005	6	2,828	678	566	486	426	340	282	212	170
TDAM06	1	1,386	333	277	238	208	166	139	104	83
TD06	2	1,960	470	392	336	294	235	196	147	118
(Grey)	3	2,400	576	480	412	360	288	240	180	144
	4	2,771	666	556	476	416	332	276	208	168
TEEJET AI	5	3,098	744	620	532	464	372	308	232	188
11006	6	3,394	816	680	584	508	408	340	256	204

Calibration Work Sheet

Sprayer Operation

Step 1 Check the Sprayer is in Good Working Order	Nozzle Flow Rate (I/min) = Speed (km/hr) x Swath Width (m) x Application	Step 8 If Tested Application is Not Satisfactory - Make
Step 2 Determine Actual Speed of Travel Follow Instructions on page 60 (Pinto Calibration page).	Rate (I/ha) ÷ 600 ÷ Number of nozzles x × 600 ÷ = I/min for each nozzle	Changes & Repeat Procedure
Tractor model Gear Range Dual power	Step 5 Fit Selected Nozzles to Boom Nozzle Type: Nozzle Size: Nozzle Colour:	Add Correct Amount of Chemical Chemical: Water Quantity: Chemical Added: Step 10 Be any Usight
Engine RPM Speed in Km/h	Step 6 Check Nozzle Accuracy & Determine Nozzle Output	Boom Height
Step 3 Measure Boom Widths Boom section 1: Boom section 2: Boom section 3:	 Thoroughly check nozzles & test the actual output of each nozzle. Pressure Setting: Individual Nozzle Outputs: 	Step 11 Record Data Date Farm location Crop to be sprayed
Boom section 4: Boom section 5:	Sum of Nozzle Outputs:	Spray Volume litres/ha Nozzle type
Boom section 6: Step 4 Select Nozzle Type & Size • Chemical: • Type of Nozzle:	Step 7 Calculate Application Rate The spray Controller automatically calculates and shows the rate of application. Application Rate (I/ha) = Spray Output (I/min) x 600 ÷ Speed (km/hr) x	Nozzle size &colour No. of nozzles used Nozzle pressure Tested Output in I/min Actual Litres/Hectare
 Pressure Setting: Travel speed (km/hr): Total number of nozzles to be used 	Swath Width (m) [x 600] ÷ [x] =	

Calibration Work Sheet

Step 1Check the Sprayer is in Good Working OrderStep 2Determine Actual Speed of TravelFollow Instructions on page 60 (Pinto Calibration page).	Nozzle Flow Rate (l/min) = Speed (km/hr) x Swath Width (m) x Application Rate (l/ha) ÷ 600 ÷ Number of nozzles x × 600 ÷ = l/min for each nozzle	Step 8 If Tested Application is Not Satisfactory - Make Changes & Repeat Procedure 		
Tractor model Gear Range	Step 5 Fit Selected Nozzles to Boom Nozzle Type:	Add Correct Amount of Chemical • Chemical: • Water Quantity: • Chemical Added:		
Dual power Engine RPM	Nozzle Size: Nozzle Colour: Step 6	Step 10 Boom Height		
Speed in Km/h Step 3 Measure Boom Widths Boom section 1: Boom section 2: Boom section 3: Boom section 4: Boom section 5:	Check Nozzle Accuracy & Determine Nozzle Output Thoroughly check nozzles & test the actual output of each nozzle. • Pressure Setting: • Individual Nozzle Outputs: • Sum of Nozzle Outputs:	Step 11 Record Data Date Farm location Crop to be sprayed Spray Volume litres/ha Nozzle type		
Boom section 6: Step 4 Select Nozzle Type & Size • Chemical: • Type of Nozzle: • Pressure Setting: • Travel speed (km/hr):	Step 7 Calculate Application Rate The spray Controller automatically calculates and shows the rate of application. Application Rate (I/ha) = Spray Output (I/min) x 600 ÷ Speed (km/hr) x Swath Width (m) [x 600] ÷ [x]	Nozzle size & colour No. of nozzles used Nozzle pressure Tested Output in I/min Actual Litres/Hectare		
Total number of nozzles to be used	=			

Part No. GP-POMBA001108 - Rev 4

Calibration Work Sheet

Sprayer Operation

Step 1 Chaste the Service is in Coast Working Order	Nozzle Flow Rate (I/min)	Step 8 If Tested Application is Not Satisfactory - Make Changes & Repeat Procedure 		
Check the Sprayer is in Good Working Order Step 2 Determine Actual Speed of Travel Follow Instructions on page 60 (Pinto Calibration page). Tractor model Gear	= Speed (km/hr) x Swath Width (m) x Application Rate (l/ha) ÷ 600 ÷ Number of nozzles x × 600 ÷ = l/min for each nozzle Step 5 Fit Selected Nozzles to Boom			
Range Dual power	Nozzle Type: Nozzle Size:	Water Quantity: Chemical Added: Step 10		
Engine RPM Speed in Km/h	Nozzle Colour: Step 6 Check Nozzle Accuracy & Determine Nozzle Output	Boom Height		
Step 3 Measure Boom Widths Boom section 1: Boom section 2: Boom section 3:	 Thoroughly check nozzles & test the actual output of each nozzle. Pressure Setting: Individual Nozzle Outputs: 	Step 11 Record Data Date Farm location		
Boom section 4: Boom section 5:	Sum of Nozzle Outputs:	Crop to be sprayed Spray Volume litres/ha Nozzle type		
Boom section 6: Step 4 Select Nozzle Type & Size	Step 7 Calculate Application Rate The spray Controller automatically calculates and shows the rate of application.	Nozzle size &colour No. of nozzles used Nozzle pressure		
 Chemical: Type of Nozzle: Pressure Setting: Travel speed (km/hr): 	Application Rate (I/ha) = Spray Output (I/min) x 600 ÷ Speed (km/hr) x Swath Width (m) [x 600] ÷ [X]	Tested Output in I/min Actual Litres/Hectare		
Total number of nozzles to be used	=			

Calibration Work Sheet

Step 1 Check the Sprayer is in Good Working Order Step 2 Determine Actual Speed of Travel Follow Instructions on page 60 (Pinto Calibration page).	Nozzle Flow Rate (l/min) = Speed (km/hr) x Swath Width (m) x Application Rate (l/ha) ÷ 600 ÷ Number of nozzles x × 600 ÷ = l/min for each nozzle	Step 8 If Tested Application is Not Satisfactory - Make Changes & Repeat Procedure 		
Tractor model Gear Range	Step 5 Fit Selected Nozzles to Boom Nozzle Type:	Add Correct Amount of Chemical • Chemical: • Water Quantity: • Chemical Added:		
Dual power Engine RPM	Nozzle Size: Nozzle Colour: Step 6	Step 10 Boom Height		
Speed in Km/h Step 3 Measure Boom Widths Boom section 1: Boom section 2: Boom section 3: Boom section 4: Boom section 5:	 Check Nozzle Accuracy & Determine Nozzle Output Thoroughly check nozzles & test the actual output of each nozzle. Pressure Setting: Individual Nozzle Outputs: Sum of Nozzle Outputs: 	Step 11 Record Data Date Farm location Crop to be sprayed Spray Volume litres/ha Nozzle type		
Boom section 6: Step 4 Select Nozzle Type & Size • Chemical: • Type of Nozzle: • Pressure Setting: • Travel speed (km/hr):	Step 7 Calculate Application Rate The spray Controller automatically calculates and shows the rate of application. Application Rate (l/ha) = Spray Output (l/min) x 600 ÷ Speed (km/hr) x Swath Width (m) [x 600] ÷ [x]	Nozzle size &colour No. of nozzles used Nozzle pressure Tested Output in I/min Actual Litres/Hectare		
Total number of nozzles to be used	=			

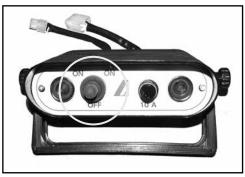
Part No. GP-POMBA001108 - Rev 4

Calibration Work Sheet

Sprayer Operation

Step 1 Chaste the Service is in Coast Working Order	Nozzle Flow Rate (I/min)	Step 8 If Tested Application is Not Satisfactory - Make Changes & Repeat Procedure 		
Check the Sprayer is in Good Working Order Step 2 Determine Actual Speed of Travel Follow Instructions on page 60 (Pinto Calibration page). Tractor model Gear	= Speed (km/hr) x Swath Width (m) x Application Rate (l/ha) ÷ 600 ÷ Number of nozzles x × 600 ÷ = l/min for each nozzle Step 5 Fit Selected Nozzles to Boom			
Range Dual power	Nozzle Type: Nozzle Size:	Water Quantity: Chemical Added: Step 10		
Engine RPM Speed in Km/h	Nozzle Colour: Step 6 Check Nozzle Accuracy & Determine Nozzle Output	Boom Height		
Step 3 Measure Boom Widths Boom section 1: Boom section 2: Boom section 3:	 Thoroughly check nozzles & test the actual output of each nozzle. Pressure Setting: Individual Nozzle Outputs: 	Step 11 Record Data Date Farm location		
Boom section 4: Boom section 5:	Sum of Nozzle Outputs:	Crop to be sprayed Spray Volume litres/ha Nozzle type		
Boom section 6: Step 4 Select Nozzle Type & Size	Step 7 Calculate Application Rate The spray Controller automatically calculates and shows the rate of application.	Nozzle size &colour No. of nozzles used Nozzle pressure		
 Chemical: Type of Nozzle: Pressure Setting: Travel speed (km/hr): 	Application Rate (I/ha) = Spray Output (I/min) x 600 ÷ Speed (km/hr) x Swath Width (m) [x 600] ÷ [X]	Tested Output in I/min Actual Litres/Hectare		
Total number of nozzles to be used	=			

Foam Marker



Adjust foam output with the flow-rate regulating valve.

2 With the control panel wired direct to battery, flick the switch on the control panel to the left.

Foam should now be coming out of the left-hand side foam nozzle at the end of the boom.

3 On the cap of the foam tank, adjust the flow-rate regulating valve to achieve the desired output of foam.

- Use the left/right selector switch to send foam to the left or right foam nozzle
- 4 Flick the selector switch to the right-hand position on the control panel, and check that the right-hand side foam nozzle is putting out the desired amount of foam (to match the left).
- 5 When re-filling, first make certain you relieve the pressure in the tank by pulling the pressure relief valve ring and letting the pressurized air escape BEFORE undoing the tank lid.

Fill the tank again to continue working.

Always release air-pressure in the tank before undoing the cap to refill, and when finished for the day.

6 Ensure the operator leaves the selector switch on the control panel in the neutral (middle) position when the unit is not in use, or drainage of the tractor battery will occur.

The lights on the control panel are lit, either left or right, if the selector switch is in the operating position.

7 Before finishing your day, ensure the air pressure in the tank is released overnight.

For maintenance of your foam marker, go to pages 5.6 - 5.8 in your General Sprayer Operators manual.

For trouble-shooting tips, go to the trouble-shooting section in the General Sprayer Operators manual.

Salvarani Foam Marker Controller (if fitted)

If your sprayer is fitted with a Salvarani foam marker, follow these instructions for its operation:

1 Mix the appropriate amount of foam concentrate with water in the tank.

You can put the foam concentrate in first, then fill the tank with clean rainwater making sure the filling hose goes to the bottom of the tank (underwater) to avoid excessive foaming of the solution while filling.

Alternatively, add the foam concentrate after filling the tank with water.

NOTE

The foam marker will output foam at the rate of approximately 10.6 Litres/hour, depending on your foam mix concentration and adjustment of output.

NOTE

The compressor requires a continuous 12-volt supply at 9 amps.

Do not operate the unit at more than 40 Deg C or less than 0 Deg C.

Foam Marker

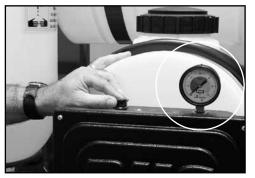
Sprayer Operation

Foam marker control with switch in OFF position.

RHS Foam Marker Controller (if fitted)

The foam marker works by pumping air through the FoamTube[™] on its way to the boom. Liquid is injected through an orifice into the air stream just prior to entering the foam mixing tube. A directional valve (on two sided models) then diverts the foam either left or right.

To operate the foam marker:


- 1 Make sure the filter is clean.
- 2 Make sure the foam marker tank tap is open.
- 3 To start the foam marker, move the switch either LEFT or RIGHT. The option of left or right selects which side you want the foam to go.

The unit operates 100% either way. The only difference is the position the Directo-Valve is set.

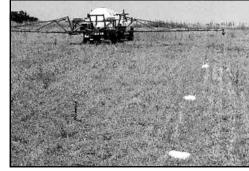
Foam marker adjustment knob & pressure gauge.

- 4 Turn OFF the foam marker by placing the switch in the central position.
- 5 The reset switch (resettable circuit breaker) on the controller, allows resetting if a prolonged high current condition occurs.

The foam marker pressure gauge.

Setting Liquid Pressure

The foam marker injects the foam liquid mixture under pressure into the air stream to make foam. Liquid pressure is adjusted using the in-cab control (see page 3.6).


The foam control knob adjusts the relative mixture of air and water, which in turn controls the output and quality of foam.

The pressure gauge shows the pressure at which the liquid is being injected (higher pressure means more liquid is being injected into the air stream)

When the knob is turned fully **counterclockwise**, the liquid pump is shut completely off. By rotating the knob **clockwise**, the pump will speed up,

Never operate the unit continuously over 60 psi. Operating continuously above 60 psi will overload the system and may cause damage.

Adjusted for low foam output.

increasing liquid flow and liquid pressure will rise.

Adjust the pressure to obtain the best foam result for your conditions.

• Do not operate under 20 psi. It will often result in intermittent foam because there simply isn't enough liquid pressure to overcome the foam discharge pressure.

Air pressure is factory set at a maximum of 28 psi. Do not increase above 28 psi or damage may result.

Foam Marker

Adjusted for high foam output.

 Generally you won't operate over 55 psi as it will use excessive solution and create a very wet foam.

In very hot, dry conditions, it may be necessary to use very wet foam to increase the life of the foam.

Foam Pressure Setting Characteristic Chart				
CHARACTERISTIC	LOW PRESSURE	HIGH PRESSSURE		
Pressure Range	20 to 30 psi	Above 30 psi		
Foam Density	Light	Heavy		
Foam Consistency	Fluffy, larger bubbles	Thick, smaller bubbles		
Solution Usage	Lower	Higher Smaller		
Average Blob Size	Larger			
Hot Weather Durability	Less	More		

Outback 10 model pictured above.

Optional Outback 6 or Outback 10 Foam Markers

If your sprayer is fitted with a higher output model Outback 6 or Outback 10 Foam Marker, go to the use and adjustment section in the General Sprayer Operators manual.

The only difference is that the adjustment dial for the foam output is on the in-cab control unit for the Outback 6 & Outback 10.

Separate 100 litre foam tank

The Outback 6 & Outback 10 models also have a separate 100 litre tank.

Chemical Mixing

Sprayer Operation

Accurately calculate the amount of chemical required.

Calculate Water & Chemical Quantities

Before spraying it is necessary to calculate the exact quantities of water and chemical needed to spray the required area. The following formulae may be useful:

1 For chemical rates expressed in litres or kg per hectare (land area), calculate the amount of chemical needed, using the formula:

Chemicals required (litres) =

Tank Volume (I) x Recommended Chemical Rate (I/ha) ÷ Spray Application Rate (I/ha)

eg. [4000 x 3] ÷ 150

= 80 litres.

(b) Unlock the latch with the foot lever.

Adding Chemical To the Spray Tank

Chemical can be added to the spray tank using the Chem-E-Flush hopper, and/or if fitted, the optional Chemical Probe.

1 Optional Chem-E-Flush Hopper

To add chemical to the spray tank, follow the steps outlined:

- a) Make sure sufficient water is added to the spray tank and the flush tank.
- b) Unlock the Chem-E-Flush dropdown leg lock by placing your foot on the lever and press down to unlock the latch.

(c) Lower the hopper to filling position._

- c) Lower the hopper to filling position.
- d) Open the Chem-E-Flush selector valve next to the hopper.

(d) Open Chem-E-Flush selector valve.

Part No. GP-POMBA001108 - Rev 4

2 For volume of mixture required to spray the selected area, calculate the liquid required, using the

following formula:

Tank Volume Required (litres) =

Area (ha) x Spray Application Rate (l/ha)

eg. 300 x 150

= 45,000 litres

3 For area covered by a given volume of mixture, calculate the area, using the following formula:

Area Covered (ha) =

Tank Volume (litres) ÷ Spray Application Rate (I/ha)

eg. 4000 ÷ 150

= 26.7 hectares

NOTE

IMPORTANT! Be sure to mix only enough spray mixture to cover the area required. Avoid wastage and problems of needless chemical disposal.

Chemical Mixing

- (e) Turn directional valve to source from spray tank
- e) Turn directional valve to source from the spray tank.
- f) Open the agitator valve.

- (g) Close transfer valve at the base of the hopper.
- g) Close the transfer valve at the base of the hopper.

Operating the pump at faster than idling speed may burst lines.

- h) Start the tractor and operate the pump with PTO & tractor engine at idling speed only.
- i) Pressurise the system by placing the Master switch ON & switch No 5 ON. Keep boom switches OFF.

- (j) Open hopper lid & add chemical powder or liquid.
- j) Open the hopper lid & add chemical powder or liquid to the hopper.
- k) Close the hopper lid & open the nozzle rinse valve to mix chemical.
- Close the rinse valve when chemical is mixed.

(m & o) Open transfer valve to transfer mixture to the spray tank.

- m) Open the transfer valve at the base of the hopper to transfer chemical mixture to the spray tank.
- n) To rinse the hopper, close the transfer valve at the base of the hopper and open the drum rinse valve.
- o) Open the transfer valve at the base of the hopper to transfer the rinse mixture to the spray tank.

(f) Open the agitator valve.

NOTE

The plumbing circuit of the sprayer incorporates a relief valve which automatically dumps pressure when the boom is switched off. Therefore Switch No 5 must be turned ON if pressure is required when the boom is off, ie agitation & chemical probe operation. (k) Close hopper lid & open the nozzle rinse valve to mix chemical.

(n) Open the drum rinse valve to rinse the hopper.

Chemical Mixing

Sprayer Operation

- (p) Close transfer valve at the base of the hopper.
- p) Close the transfer valve at the base of the hopper after mixture is transfered.
- q) Return the selector valve to spray position when completed.

(r) Lift the hopper back to transport position.

r) Lift the hopper back to transport position when mixing is completed.

Push the latch lever down and lift the hopper up, then release the lever to lock.

(b) Turn directional valve to source from spray tank.

2 Chemical Probe

To add chemical to the spray tank using the chemical probe, follow the steps outlined:

- a) Make sure sufficient water is added to the spray tank and the flush tank.
- b) Turn directional valve to source from the spray tank.

(c) Open the agitator valve.


- c) Open the agitator valve.
- d) Start the tractor and operate the pump with PTO & tractor engine at idling speed only.

Operating the pump at faster than idling speed may burst lines.

e) Pressurise the system by placing the Master switch ON & switch No 5 ON. Keep boom switches OFF.

(q) Return the selector valve to spray position.

NOTE

IMPORTANT! Ensure agitation of spray tank continues after chemical is added to the spray tank.

NOTE

The plumbing circuit of the sprayer incorporates a relief valve which automatically dumps pressure when the boom is switched off.

Therefore Switch No 5 must be turned ON if pressure is required when the boom is off, ie, for agitation & chemical probe operation.

Chemical Mixing

(g) Open transfer valve to transfer mixture to spray tank.

g) Remove the probe from its holder, place it into the chemical and then, open the probe valve to transfer chemical to the spray tank.

(h) Close the chemical probe valve.

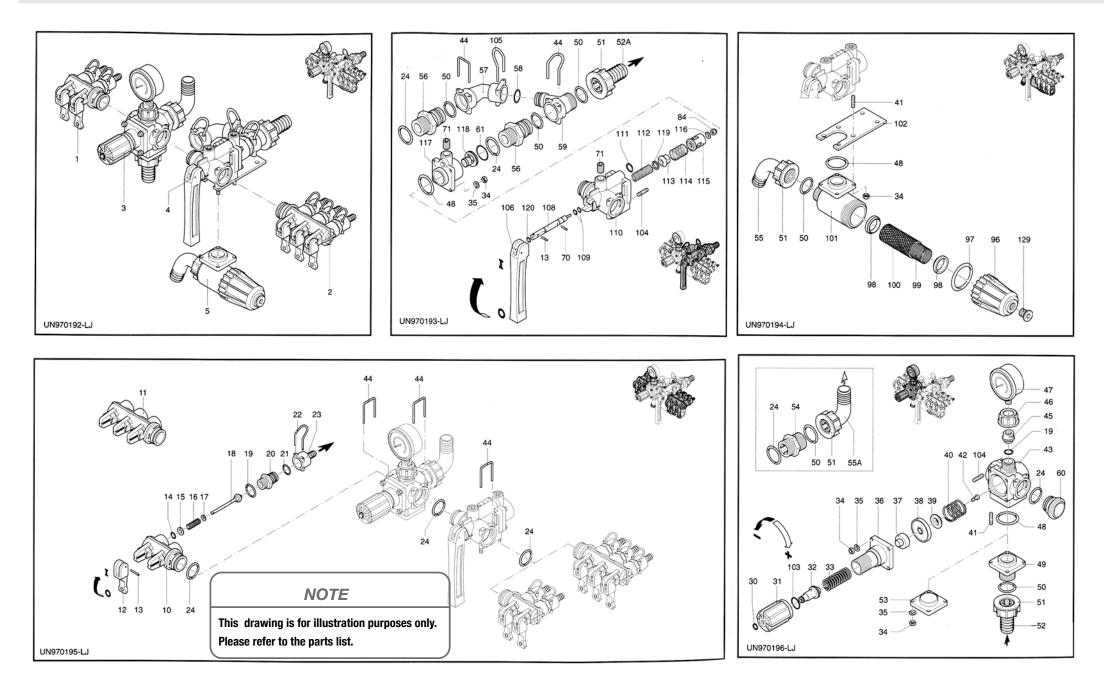
- h) Close the probe valve when chemical transfer is completed.
- i) Rinse the probe and chemical container with fresh water and repeat steps "g & h" to transfer rinse materials to the tank.

(j) Return the probe to its holder.

j) Return the probe to its holder when completed.

NOTE

IMPORTANT! Ensure agitation of spray tank continues after chemical is added to the spray tank.

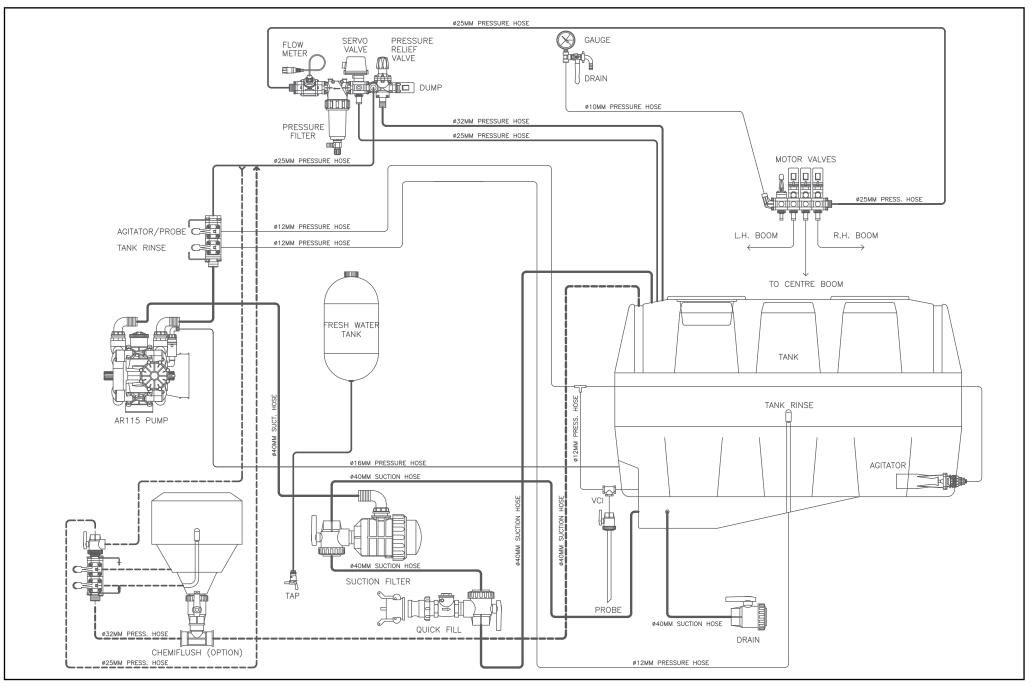

Sprayer Operation

SECTION 5 ASSEMBLY DRAWINGS & PARTS LISTINGS

UCM/ECM CONTROLLERS	34
PONY PLUMBING DIAGRAM	36
WIRING DIAGRAM	37
LIQUID CONTROL SYSTEM	38
LIQUID SYSTEM	39
VALVES & ENVIRO-TRANSFER KIT	40
FILTERS	41
CHEM E FLUSH ASSEMBLY	42
LIDS, VENTURIS & TANK RINSE JET	44
FOAM MARKER SALVARANI	45
GEX BOOMS	46

AIRBAGS	51
ENVIROSAFE BOOMS	53
BOOM CENTRE SECTION - STANDARD & G-VAR	57
BOOM SELF LEVELLER - STANDARD & G-VAR	58
BOOM - 16.5 METRE STANDARD	59
BOOM - 16.5 METRE G-VAR	60
BOOM CENTRE SECTION - HYDRALINK	61
BOOM SELF LEVELLER - HYDRALINK	62
BOOM - 12 METRE HYDRALINK	63
BOOM - 15 METRE HYDRALINK	64

UCM/ECM Controllers (Pressure Relief Valve) Assembly Drawings & Parts



UCM/ECM Controllers (Pressure Relief Valve)

Pos	Part No	Description	Qty	Pos	Part No	Description	Qty
1	1547	Left 2-way valve	1	47	391240	Pressure gauge, 0-20 bar	1
1	1548	Left 3-way valve		48	660170	0-Ring	3
2	1571	Right 2-way valve		49	394810	Flange	1
2	1572	Right 3-way valve		50	550350	0-Ring	4
3	1348	ECM compl.reg.valve		51	550242	Ring nut	2
3	1349	UCM compl.reg.valve	i l	52	550210	Hose tail	2
4	1351	Distributor body+R		53	394840	Flange	1
5	1553	Complete filter	i	54	550340	Threaded adapter	1
10	394850	2-way valve body		55	550370	Elbow	1
11	394860	3-way valve body		56	395000	Manifold nipples	2
12	394690	Red valve lever	4	57	395520	Body manifold	1
13	390330	Pin	5	58	390060	0-Ring	1
14	390330	0-Ring	4	58	395020	Body manifold	
14	390312	Washer	4	60	394870	Plug	1
	390312			61	770260		· ·
16		Spring	4			0-Ring	1
17	390313	Washer	4	70	392120	Pin	1
18	390323	Complete valve rod	4	71	880581	Plug	2
19	180101	0-Ring	5	84	395390	Nut	1
20	392600	Threaded adapter	4	96	396100	Filter cover	1
20	392604	Plug - optional		97	395081	0-Ring - Viton	1
21	640070	0-Ring	4	98	395071	Filter gasket	2
22	392580	Fork	4	99	396110	Internal filter	1
23	392870	Hose tail	4	100	396130	External grid	1
23	392590	Hose tail	4	101	395030	Filter box	1
23	392620	Hose tail	4	102	394820	Bracket	1
24	390291	0-Ring	5	103	770130	0-Ring	1
30	480550	Circlip	1	104	392330	Stud	8
31	394790	Adjustment knob	1	105	850730	Fork	1
32	394770	Spring pin	1	106	1660560	Control lever	1
33	1040830	Spring	1	108	1660020	Complete valve rod	1
34	390440	Nut	16	109	480561	O-Ring - Viton	2
35	550331	Washer	12	110	1660010	Main valve	1
36	394780	Upper body		111	1660230	O-Ring	1
37	394751	Piston		112	1660541	Spring	1
38	394741	Diaphragm - Gomma		113	1660050	Feed rod valve	1
38	394740	Diaphragm - Desmopan	i l	114	1660090	Spring	1
38	394742	Diaphragm - Viton	i	115	1660080	Guide	i
39	394720	Valve		116	393790	Washer	i
40	394730	Spring		117	1660060	Flange	1
41	394830	Stud	8	118	1660100	Red seat	1
42	680700	Bolt		118	1660110	Orange seat	1
43	394700	Regulating valve body		118	1660120	Blue seat	1
43	395530	Fork	5	119	1660140	Washer	1
44	394800	Pressure gauge attach	1	120	1660551	O-Ring - Viton	1
45 46				120	396590		1
40	550450	Ring nut		129	390390	Plug & gasket	

Pony Plumbing Diagram

Assembly Drawings & Parts

Wiring Diagram

G

O BROWN 10 1 BLUE

PRESSURE

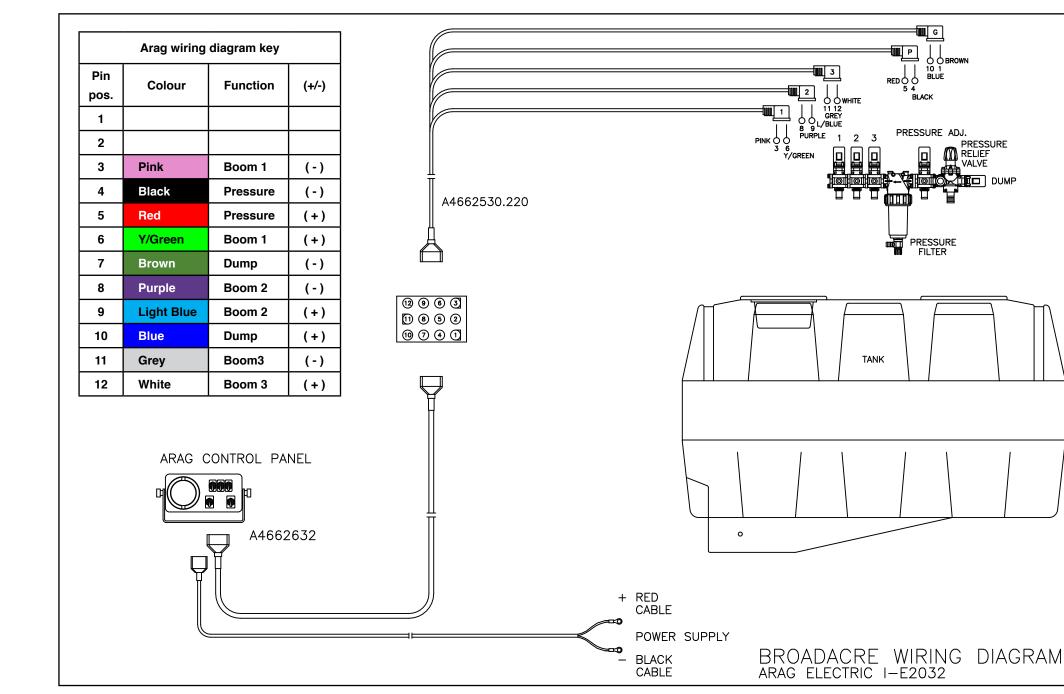
DUMP רם

RELIEF VALVE

ШЩ Р

REDÓÓ

23


TANK

54

BLACK

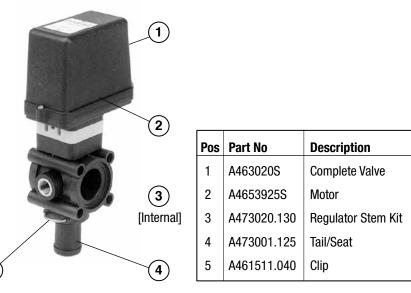
PRESSURE ADJ.

PRESSURE FILTER

Liquid Control System

Electric Pressure Dump Valve, Manual Pressure Relief Valve, Electric Regulating Valve (Servo) and Flowmeter

Qty

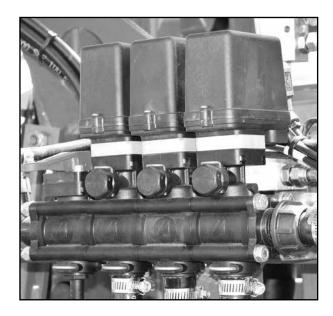

Liquid Control System - Complete Valve Assembly

Manual Regulator-Dump Valve Assembly

Pos	Part No	Description	Qty
1	A471502	Complete Regulator	1
2	A460000.230	Clip	1
3	A471202.332	Bypass Tail	1
4	A4653920S	Valve Motor	1
5	A461511.040	Clip	1
6	A473001.132	Inlet Tail	1
7	A471202.550	Dump Valve kit	1
8	A471502.180	Regulator kit	1

Electric Regulating Valve

Flowmeter Assembly



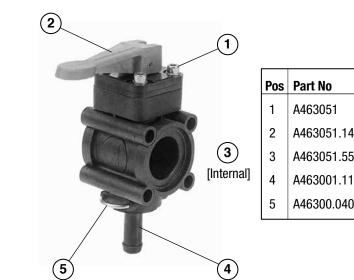
Pos	Part No	Description	Qty
1	A4623862 *	Complete Valve	1
2	POL41316399	Rapid Check Turbine Assembly	1
3	POL413003AK.CR	Sensor with Plug	1

* PART NUMBERS IN ITALICS ARE NON-STOCK ITEMS & WILL NEED TO BE ORDERED.

Liquid System

Boom Shut-Off Valves, Pressure Gauge & Control Valve/Taps

Boom Shut-Off Valve (each)



Pos	Part No	Description	Qty
1	A473001	Complete Valve	1
2	A4653902S	Motor	1
3	A473001.550	Regulator Stem Kit	1
4	A473001.125	Tail/Seat	1
5	A461511.040	Clip	1

Shut-Off Taps - Tank Rinse, Flushing Tap & Agitators

Pressure Gauge: L-G 1611

Pos	Part No	Description	Qty
1	A463051	Complete Valve	1
2	A463051.140	Handle	1
3	A463051.550	Kit	1
4	A463001.113	Tail	1
5	A46300.040	Clip	1

Part No. GP-POMBA001108 - Rev 4

Valves & Enviro-Transfer Kit

Assembly Drawings & Parts

Drain Valve 2"

Pos	Part No	Description	Qty
1	A4542137	Valve Complete	1
2	A454237.050	Tap Handle	1
3	A-EL200	Tail	1

Tank Selector Valve 11/2"

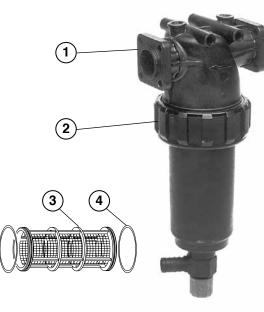
Pos	Part No	Description	Qty
1	A4542236	Valve Complete	1
2	A454237.050	Tap Handle	1

Boom Flushing Tap

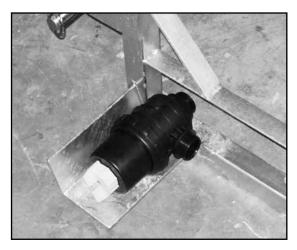
Pos	Part No	Description	Qty
1	BALL12F2M	Valve Complete	1
2	A-EL1212	Elbow	1

Enviro-Transfer Taps (if fitted)

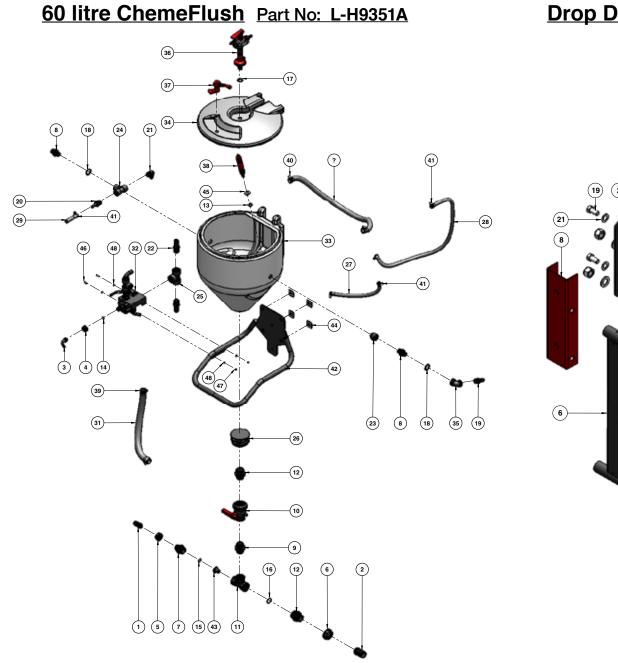
Pos	Part No	Description	Qty
1	L-H9562	Male Coupler	1
2	L-H9556	Female Rinsing Socket	1


Suction Filter (shown above on sprayer)

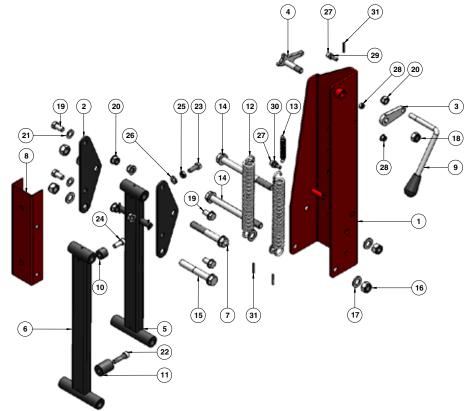
Pressure Filter (shown below on sprayer)



Pressure Filter



Pos	Part No	Description	Qty
1	A316 173	Filter Complete	1
2	A316000.050	Main Seal	1
3	A316003.030	Screen - internal	1
4	A316300.60	Screen O-Rings	2



Smaller suction filters may be on some units: Part # A314463

Pos	Part No	Description	Qty
1	A32621135	Filter Complete	1
2	AG10090	Main Seal	1
3	A3260035.030	Screen - internal	1
4	AG10052	Screen O-Rings	2

Drop Down Assembly Part No: L-H9355A


Chem E Flush Assembly

Pos	Part No	Description	Qty
	L-H9351A	60 litre ChemeFlush	
1	A106425	TAIL 1" TO 25MM	1
2	A106640	TAIL 1 1/2" TO 40MM	1
3	A116313	ELBOW D13 FOR FLY NUT 3/4"	1
4	A200030	FLY NUT 3/4"	1
5	A200040	FLY NUT 1"	1
6	A200060	FLY NUT 1 1/2"	1
7	A240045	NIPPLE 1"-1 1/4" REDUCING	1
8	A250030	NIPPLE 3/4"	2
9	A250050	NIPPLE 1 1/4"	1
10	A454135	BALL VALVE POLY 1 1/4" 2 WAY	1
11	A1302050	TEE 1 1/4"	1
12	A2402065	REDUCER NIPPLE 1 1/2"-1 1/4"	2
13	AG4000B	FLAT SEAL 5/8" EPDM	1
14	AG10031	O RING 3/4"	1
15	AG10041	O RING 1"	1
16	AG10061	O RING 1 1/2"	1
17	AG40002	FLAT SEAL 1/2" EPDM	1
18	AG40003	FLAT SEAL 3/4" EPDM	2
19	BJHB075	HOSEBARB 3/4" NPT X 3/4" BARB	1
20	BJHB075-050	HOSEBARB 3/4" NPT X 1/2" BARB	1
21	BJHB075-90	ELBOW 3/4" NPT X 3/4" BARB	1
22	BJHB100	HOSEBARB 1"NPT X 1" BARB	2
23	BJSL075-90	ELBOW 3/4" MALE FEMALE	1
24	BJTEE075	TEE 3/4" FEMALE	1
25	BJTEE100	TEE FEMALE THREADED 1" NPT	1
26	BJTF150AV	ANTI VORTEX FITTING 1 1/2"	1
27	HPW12 12MM	HOSE	1
28	HPW12 12MM	HOSE	1
29	HPW12 12MM	HOSE	1
30	HPW20 20MM	HOSE	1
31	HPW25 25MM	HOSE	1
32	KB-1003A-1 60LT	CHEM-E-FLUSH MANIFOLD	1
33	P60C-1 60LT	CHEMIFLUSH TANK	1
34	P60C-2	LID	1
35	PH4622	ELBOW 3/4" FEMALE	1
36	POL6340839P.CRO	RINSING NOZZLE WITH 1/2" TAIL	1
37	POL63402999	LEVER HANDLE CHEM-EFLUSH	1
38	POL63408499	RINSING NOZZLE	1
39	TR1HC	HOSE CLAMP 25MM 1" WORM DRIVE	2
40	TR34HC	HOSE CLAMP 20MM 3/4" WORM DRIVE	2

Pos	Part No	Description	Qty
41	TR12HC	HOSE CLAMP 20MM 1/2" WORM DRIVE	5
42	UP-105AB	CHEM-E-FLUSH MOUNTING BRKT SERIES 2	1
43	UP-116	NOZZLE 8.5 VENTURI CHEM E PLUS	1
44	40SQWASHER	40MM SQUARE WASHER	4
45	.75SSWASHER	3/4" STAINLESS STEEL WASHER	1
46	M6X16 M6 X 16	BOLT HT ZP	2
47	M6NNUT	M6 NYLOC NUT	2
48	M6FWASHER	M6 FLAT WASHER ZP	4
	<u>L-H9355A</u>	Drop Down Assembly	
1	L-H9355A-1	MAIN FRAME	1
2	L-H9355A-2	HINGE PLATE	2
3	L-H9355A-3	LEVER	1
4	L-H9355A-4	LOCK PLATE	1
5	L-H9355A-5	ARM, INNER	1
6	L-H9355A-6	ARM, OUTER	1
7	L-H9355A-7	LOCK PIN	1
8	L-H9355A-8	BOLTING CHANNEL	1
9	L-H9355A-9	LOCK HANDLE	1
10	L-H9355A-10	STOPPER, TOP	1
11	L-H9355A-11	STOPPER, BOTTOM	1
12	L-H9355A-12	SPRING 4.5 X 210 45 COILS	2
13	L-H9355A-13	SPRING 1.4 X 60 38 COILS	1
14	M16X180	M16 X 180 BOLT HT ZP	2
15	M16X110	M16 X 110 BOLT HT ZP	1
16	M16NNUT	M16 NYLOC NUT HT ZP	4
17	M16FWASHER	M16 FLAT WASHER ZP	10
18	M14NNUT	M14 NYLOC NUT HT ZP	1
19	M12X25	M12 X 25 SET SCREW HT ZP	4
20	M12NNUT	M12 NYLOC NUT HT ZP	5
21	M12FWASHER	M12 FLAT WASHER ZP	8
22	M10X40HEADSCREW	M10 X 40 ALLEN HEAD SCREW HT ZP	1
23	M10X30	M10 X 30 HEX HEAD BOLT HT ZP	1
24	M10X25HEADSCREW	M10 X 25 ALLEN HEAD SCREW HT ZP	1
25	M10HHNUT	M10 HEX HALF NUT HT ZP	1
26	M10FWASHER	M10 FLAT WASHER ZP	1
27	M8X25HEADSCREW	M8 X 25 ALLEN HEAD SCREW HT ZP	2
28	M8NNUT	M8 NYLOC NUT HT ZP	2
29	M8HHNUT	M8 HEX HALF NUT HT ZP	2
30	M8FWASHER	M8 FLAT WASHER ZP	2
31	ROLLPIN4	ROLL PIN DIAMETER 4	5

Lids, Venturis & Tank Rinse Jet

Assembly Drawings & Parts

Tank Lid & Basket

Pos	Part No	Description	Qty
1	A365060	Large lid	1
2		0-Ring/Seal	1

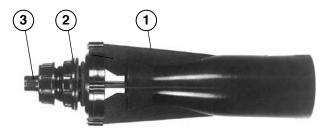
Foam & Rinse Tank Lids

1)

2

Pos	Part No	Description	Qty
1	A354010	Foam Tank Lid (if fitted)	1
2	A3522221	Small Tank Lid	1

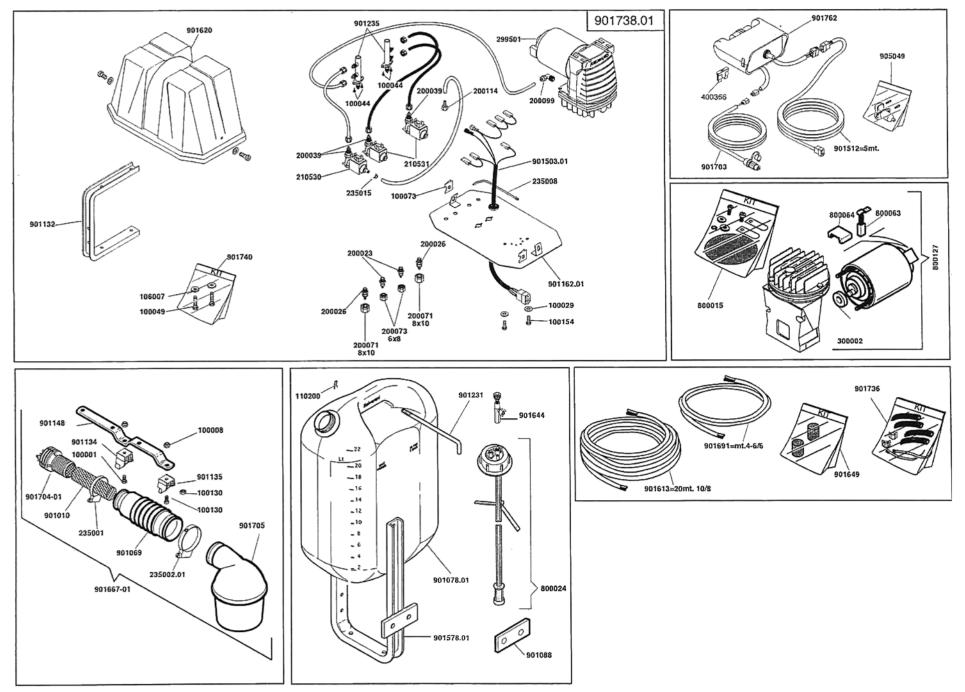
Lid

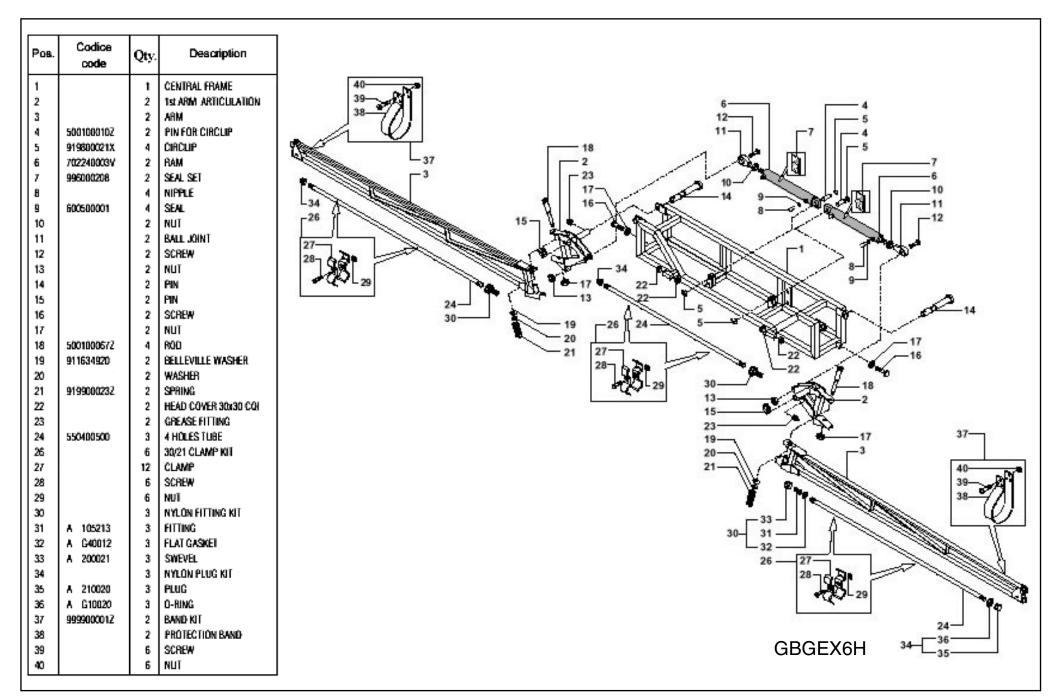

Tank Rinsing Jet

& Agitator (if fitted)

Tank Rinse Jet

Pos	Part No	Description	Qty
1	27500E-12-8-TEF	Tank Rinsing Jet	1


Agitator (if fitted)


Pos	Part No Description		Qty
1	A502 163	Agitator Complete	1
2	A200050	Fly nut	1
3	A5021163.900	Agitator Jet	1

Part No. GP-POMBA001108 - Rev 4

Foam Marker Salvarani

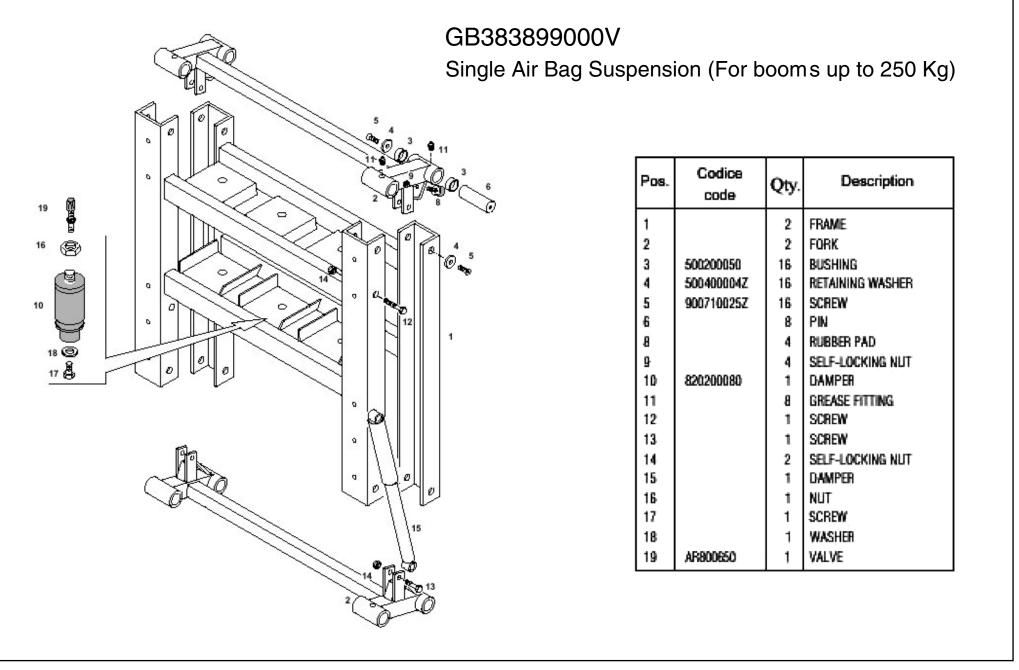
GEX Booms

GEX Booms

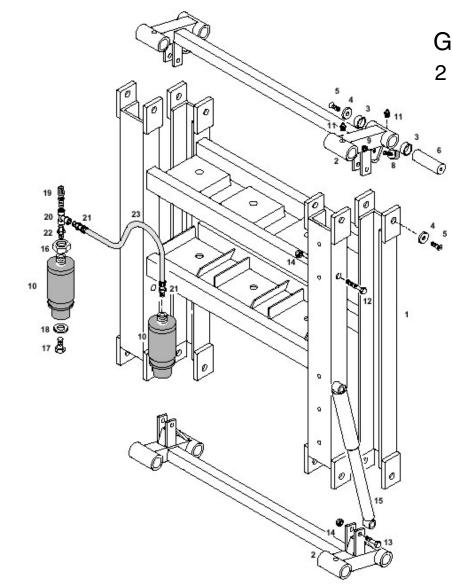
Pos.	Codice code	Qty.	Description	
1		1	CENTRAL FRAME	40
2		2	1st ARM ARTICULATION	39 <u>6</u> <u>4</u>
3		2	ABM	
4	5001000102	2	PIN FOR CIRCLIP	
5	919800021X	4	CIRCUP	
6	702240003V	2	RAM	
7	995000208	2	SEAL SET	
8		4	NIPPLE	
9	600500001	4	SEAL	
10		2	NUT	
1		2	BALL JOINT	
2		2	SCREW	
13		2	NUT	
4		2	PIN	9-17 22-17 9-1
5		2	PIN	
6		2	SCREW	
T -		2	NUT	
8	5001000672	4	R00	
9	911634920	2	BELLEVILLE WASHER	
0		2	WASHER	
1	9199000232	2	SPRING	
2		2	HEAD COVER 30x30 COI	15 9
3		2	GREASE FITTING	23
24	550400500	3	4 HOLES TUBE	19-17
6		6	30/21 CLAMP KH	20 3
27		12	CLAMP	21
8		6	SCREW	
9		6	NUT	
0		3	NYLON FITTING KIT	-33 -
31	A 105213	3	FITTING	30-31-1
22	A G40012	3	FLAT GASKET	32
33	A 200021	3	SWEVEL	26
34		3	NYLON PLUG KIT	28 75 30
ъ	A 210020	3	PLUG	20
36	A G10020	3	O-RING	1. Car - 20
37	999900001Z	2	BAND KIT	24-
38		2	PROTECTION BAND	
39		6	SCREW	GBGEX8H 34-C35
40	1	6	NUT	

GEX Booms

			GBGE	
Pos.	Codice code	Qty.	Description	9 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	550200600 999900004Z	2 2 2 2 6 12 6 2 4 8 4 2 2 2 2 2 2	EXTENSION SCREW BELLEVILLE WASHER NUT BLOCKING SPRING SCREW WASHER SELF-LOCKING NUT 2 HOLES TUBE 30/21 CLAMP KIT CLAMP SCREW NUT HOSE HEAD COVER 30x30 CO PIN	


GEX Booms

Ров.	Codice	Qty.	Description]
	code	Viy.		
1		1	CENTRAL FRAME	
2		2	1st ARM ARTICULATION	40 De 13
3		2	ABM	6 4
4	5001000102	2	PIN FOR CIRCLIP	
5	919800021X	4	CIACUP	
6	702240003V	2	RAM	
7	995000208	2	SEAL SET	$\begin{bmatrix} -37 \\ -3 \end{bmatrix}$
8	33000200	â	NIPPLE	
9	6005800001	4	SEAL	
10	1001000	2	NUT	
11		2	BALL JOINT	
12		2	SCREW	
13		2	NUT	
14		2	PIN	
15		2	PIN	
			SCREW	
16		2		30-19 -26 24 5-5
17	50000000013	2	NUT	
18	5001000572	4	ROD SELLENDER SKARMER	21 27 17
19	911634920	2	BELLEVILLE WASHER	28 28 22 22 16
20	010000000	2	WASHER	
21	9199000232	2	SPRING	13 18
22		2	HEAD COVER 30x30 COI	152
23		2	GREASE FITTING	23
24	550400500	3	4 HOLES TUBE	19-17
26		6	30/21 CLAMP KH	203
27		12	CLAMP	21
28		6	SCREW	
29		6	NUT	
30		3	NYLON FITTING KIT	-33 -
31	A 105213	3	FITTING	30-31-1
32	A G40012	3	FLAT GASKET	
33	A 200021	3	SWEVEL	26 27 -
34		3	NYLON PLUG KIT	28 75 38
35	A 210020	3	PLUG	
36	A G10820	3	O-RING	* (~ 28
37	999900001Z	2	BAND KIT	
38		2	PROTECTION BAND	24-
39		6	SCREW	GBGEX10H 34-C35-
40		6	NUT	


GEX Booms

			GBGI	
Pos.	Codice code	Qty.	Description	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	550400500 999900004Z	2 2 2 2 2 6 12 6 2 4 8 4 4 2 2 2	EXTENSION SCREW BELLEVILLE WASHER NUT BLOCKING SPRING SCREW WASHER SELF-LOCKING NUT 4 HOLES TUBE 30/21 CLAMP KIT CLAMP SCREW NUT HOSE HEAD COVER 30x30 CQI PIN	

Airbags

Airbags

GB383897000V 2 Air Bag Suspension (For booms up to 400 Kg)

Pos.	Codice code	Qty.	Description
1		2	FRAME
2		2	FORK
3	500200050	16	BUSHING
4	500400004Z	16	RETAINING WASHER
5	900710025Z	16	SCREW
6		8	PIN
8		4	RUBBER PAD
9		4	SELF-LOCKING NUT
10	820200080	2	DAMPER
11		8	GREASE FITTING
12		1	SCREW
13		1	SCREW
14		2	SELF-LOCKING NUT
15		1	DAMPER
16		2	NUT
17		2	SCREW
18		2	WASHER
19	AR800650	1	VALVE
20	820110002	1	FITTING
21	820110004	2	FITTING
22		1	NIPPLE
23		-	TUBE

EnviroSafe Booms

GBGES55 »-								
	Pos.	Codice	~	Description	34	905200024Z	1	NUT
EnviroSafe Booms	POS.	code	Qty.	Description	35	920100034Z	1	BALL JOINT
50-42					36	996008174	1	SEAL SET
	1		1	BODM COUPLING	37		2	ARM LOCKING REST
	2		-5	PIN	38		2	SCREW
	3	500400004Z	12	WASHER	39		2	SELF-LOCKING NUT
	4	900710025Z	12	SCREW	40		2	SCREW
	5		1	ARTICULATED FRAME	41		4	SPRING
	6		1	PIN	42		2	ARITICULATED CAM
	7		1	SELF-LOCKING NUT	43		2	SCEW
	8		1	WASHER	44		2	SELF-LOCKING NUT
	9		1	SPRING (BROWN)	45		2	SCREW
	10	919900040V	1	SPRING (YELLOW)	46		-4	WASHER
	11		2	CLUTCH	47		6	NUT
	12		2	SELF LOCKING NUT	48		4	SPRING
	13		4	SPACING	49		1	CENTRAL BONNET
	14		7	GREASE FITTING	50		12	SCREW
	15		1	MAIN FRAME	51		12	WASHER
	16		2	HEAD COVER 50x50	52		12	NUT
	17		2	PIVOTTING WHEEL SUPPOR	53		4	SKIRT SUPPORT
	18	500500002Z	4	RETAINER	54		60	WASHER
	19		14	SELF-LOCKING NUT	55		30	RIVET
	20		12	WASHER	56		2	PVC SKIRT
	21	153400043V	2	FORK	57		1	SUPPORT
	22	905400018	4	SELF-LOCKING NUT	58		4	SCREW
	23	907019034Z	4	WASHER	59		1	ALUMINIUM PLATE
	24	500100126Z	2	PIN	60		1	CENTRAL LEVEL
	25	500200029Z	4	SPACER	61		2	SCREW
	26	950511710	2	WHEEL	62		2	SELF-LOCKING NUT
	27		1	CENTRAL FRAME	63		1	HOSE
	28		1	PIN	64		1	HOSE
A A A A A A A A A A A A A A A A A A A	29		1	TILT RAM END STROKE	65		1	HOSE
	30		1	PIN	66		6	CLAMP
	31	702550024V	1	RAM	67		3	TRUSP 401
	32	600500001	2	SEAL	68		2	SLIDER
	33		2	NIPPLE	69		4	SHIM
		-		I				

EnviroSafe Booms

Assembly Drawings & Parts

2

2

32

36

36

2

4

10

188

94

2

2

4

4

4

2

2

2

2

14

8

2

2

2

2

2

2

2

WHEEL

SCREW

WASHER

SCREW

WASHER

RIVET

SCREW

WASHER

HOSE

HOSE

HOSE

HOSE

CLAMP

FITTING

BALL STOPPER

STEEL BALL

RED BALL

0-RING

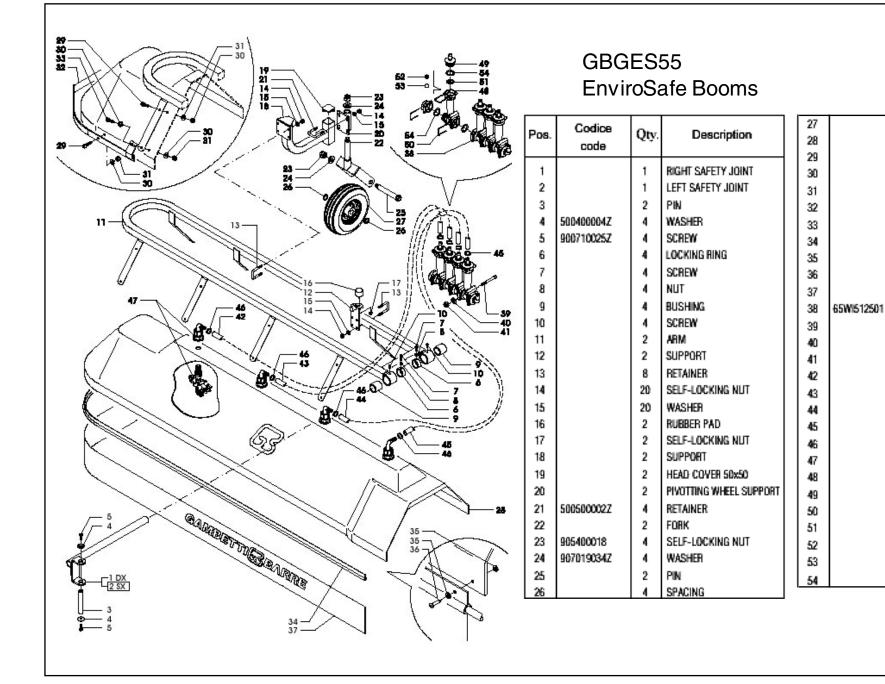
FORK

TRIJSP 401

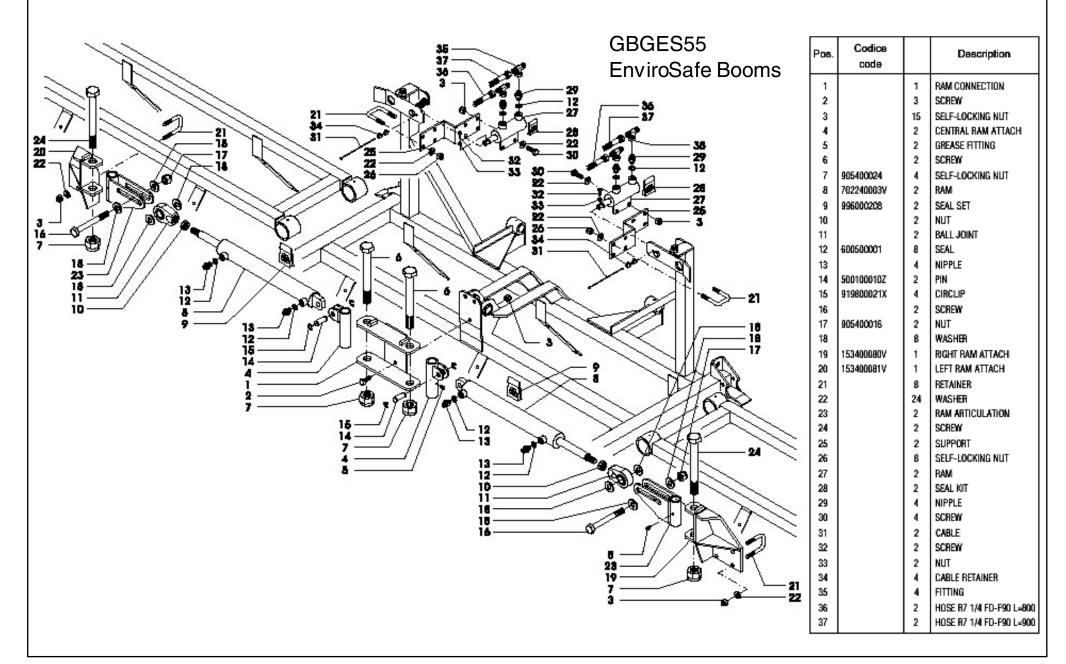
LEVEL INDICATOR BODY

SKIRT SUPPORT

SKIRT PROTECTION

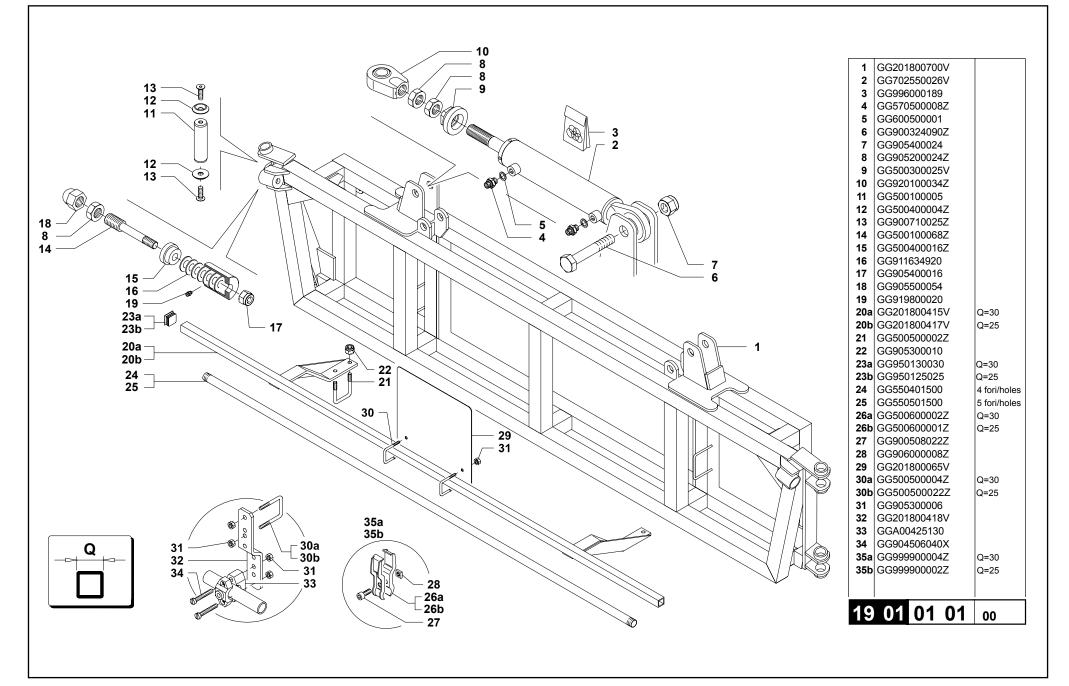

SELF-LOCKING NUT

LEVEL GAUGE

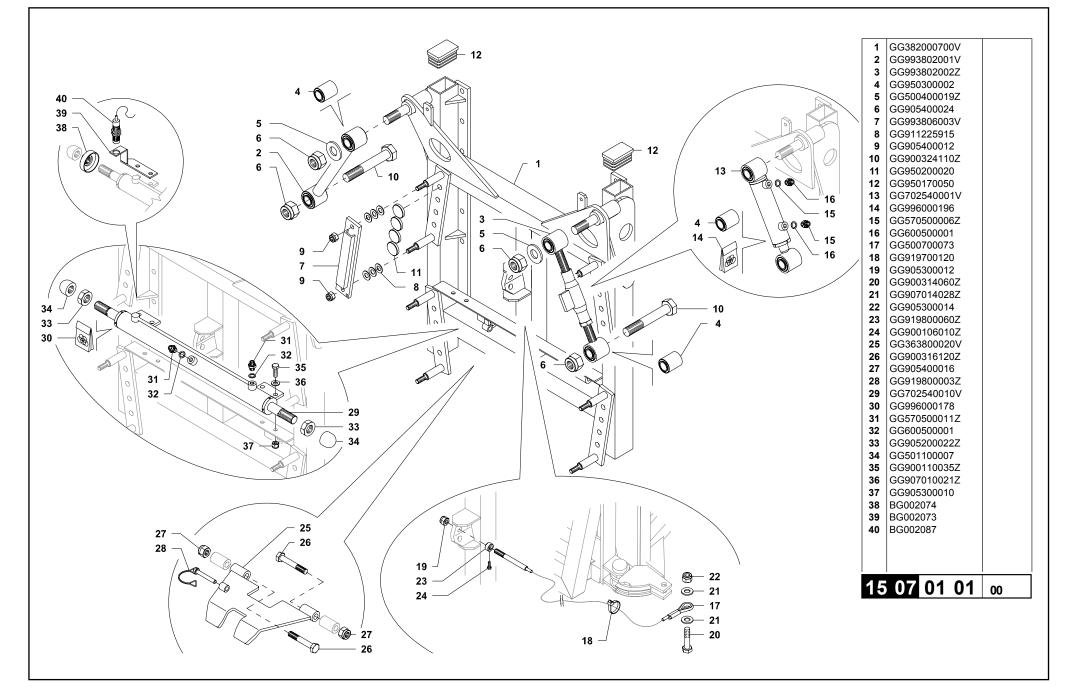

NUT

SIDE BONNET

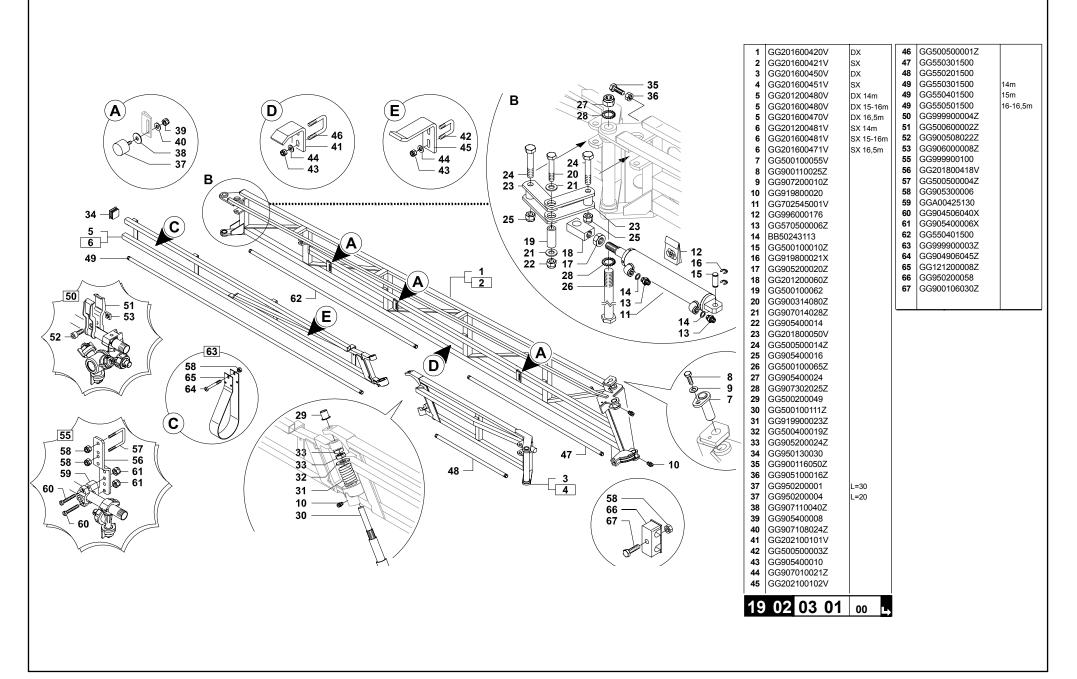
SIDE BONNET PROTECTION

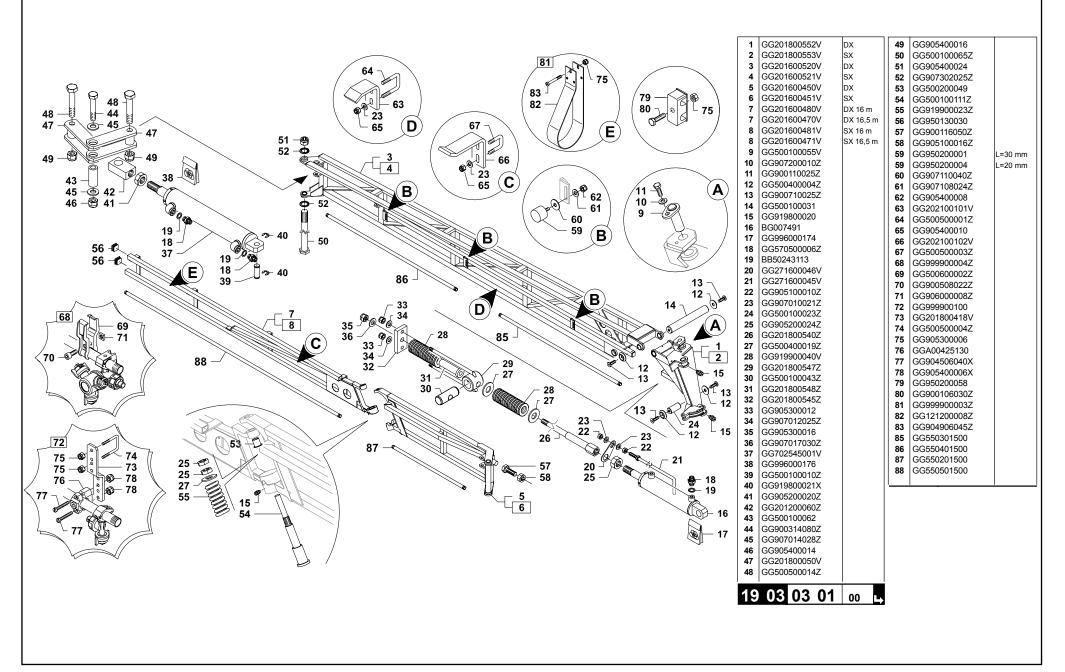


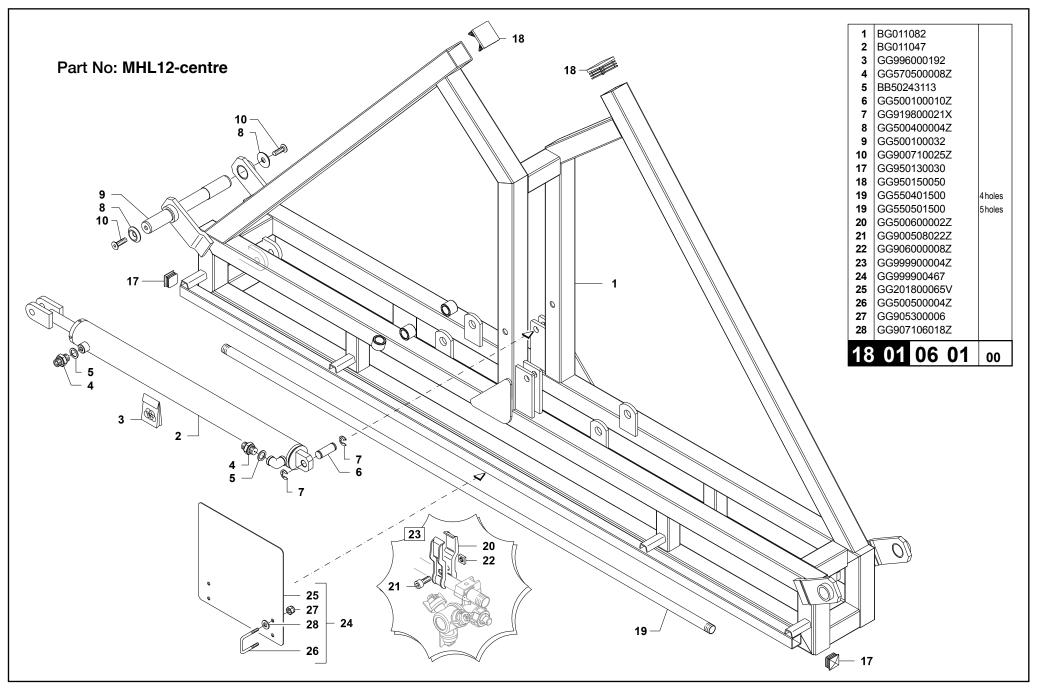
Part No. GP-POMBA001108 - Rev 4

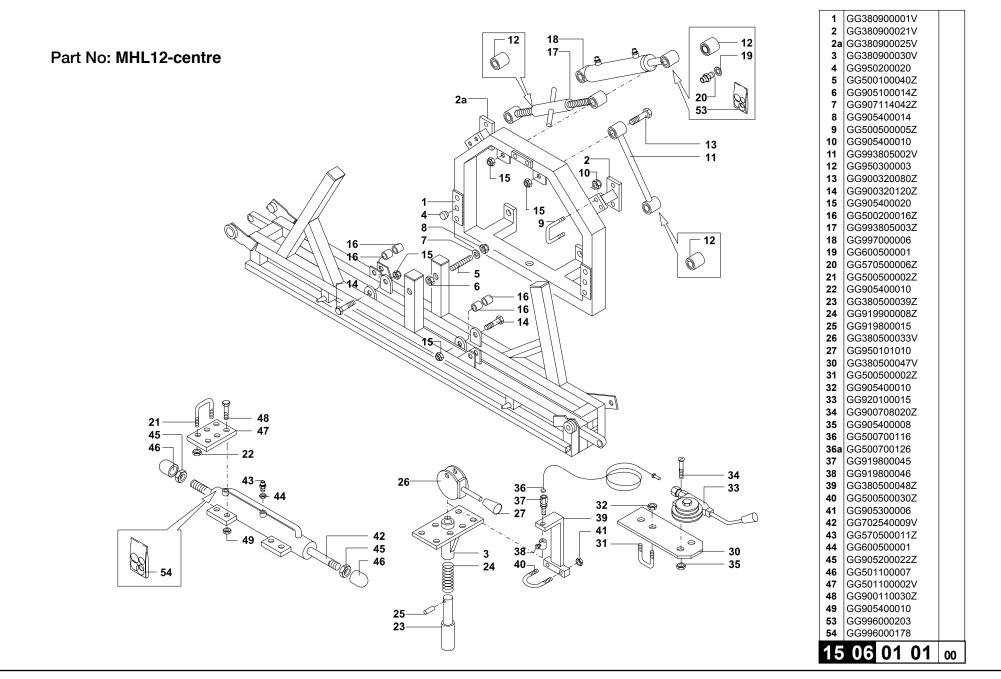


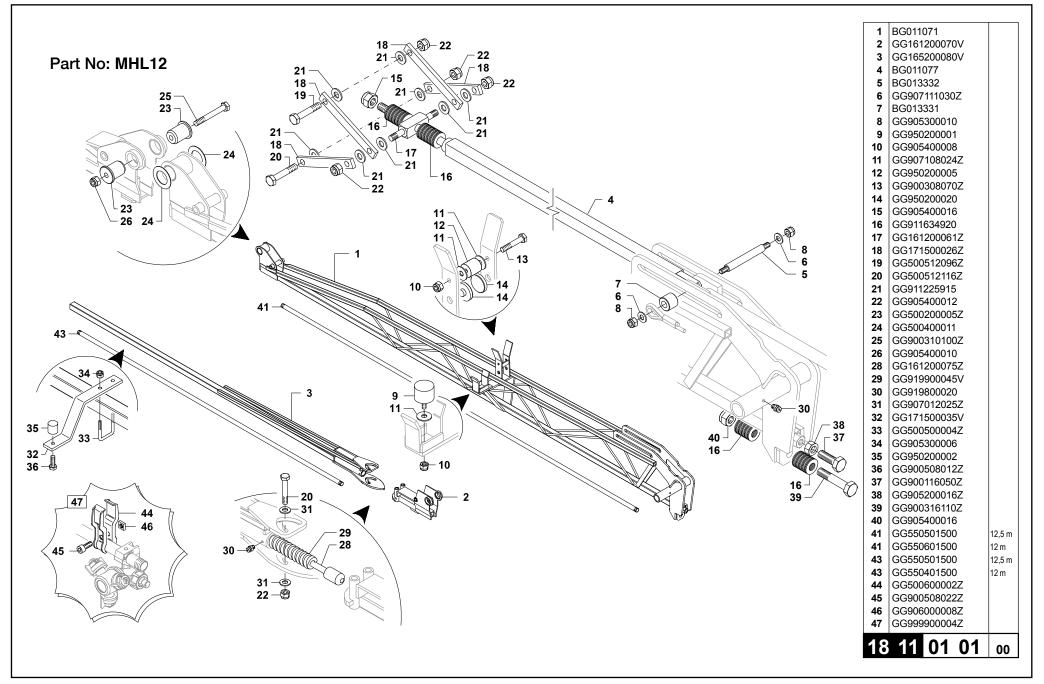
	GB65WI512501 (Co			к не	d Ball Indicator)
	_ &	Pos.	Codice code	Qty.	Description
	1 ~.	1		3	LEVEL INDICATOR BODY
	ů	2		3	BALL STOPPER
	2	3		7	FORK
	/ .	4		3	STEEL BALL
	1	5		3	RED BALL
	• • • • •	6		3	FITTING
		7		1	FITTING
	-	8		3	FITTING
00	. / [*	9		1	FITTING
		10		1	PLUG
	C C	11		7	D-RING

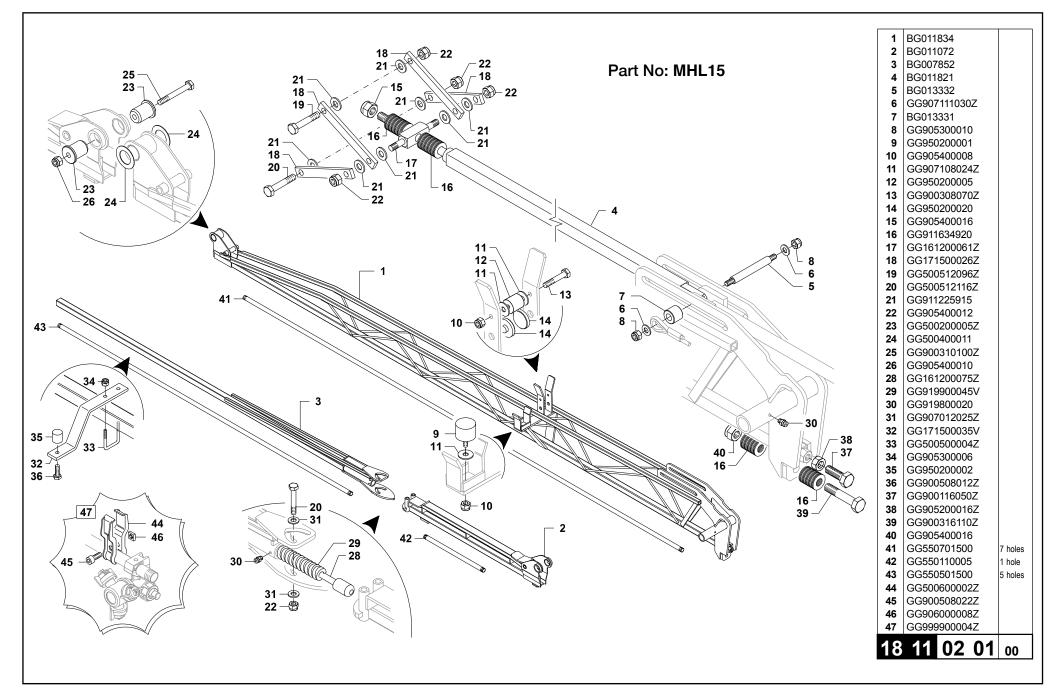

Boom Centre Section - Standard & G-Var


Boom Self Leveller - Standard & G-Var Assembly Drawings & Parts


Boom - 16.5 metre Standard


Boom - 16.5 metre G-Var


Boom Centre Section - Hydralink


Boom Self Leveller - Hydralink

Boom - 12 metre Hydralink

Boom - 15 metre Hydralink

CROPLANDS

AUSTRALIA

Croplands Equipment Pty Ltd ACN 006 450 184

PO Box 2441 Dry Creek 50 Cavan Road Dry Creek SA 5094 Australia

Freecall: 1800 999 162 Freefax: 1800 623 778 Email: sales@croplands.com.au Website: www.croplands.com.au

NEW ZEALAND

Croplands Equipment Ltd PO Box 2004, Stortford Bridge, Hastings 4120

Location: 1422 Omahu Road, Hastings 4120 New Zealand

Freecall: 0800 106 898 Freefax: 0800 117 711 Email: sales@croplands.co.nz Website: www.croplands.co.nz

Your nearest Croplands Dealer can be found in the dealer section on the Croplands website